Step |
Hyp |
Ref |
Expression |
1 |
|
rmo2.1 |
⊢ Ⅎ 𝑦 𝜑 |
2 |
|
df-rmo |
⊢ ( ∃* 𝑥 ∈ 𝐴 𝜑 ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) |
3 |
|
nfv |
⊢ Ⅎ 𝑦 𝑥 ∈ 𝐴 |
4 |
3 1
|
nfan |
⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) |
5 |
4
|
mof |
⊢ ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ∃ 𝑦 ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 = 𝑦 ) ) |
6 |
|
impexp |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 = 𝑦 ) ↔ ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝑥 = 𝑦 ) ) ) |
7 |
6
|
albii |
⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝑥 = 𝑦 ) ) ) |
8 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝑥 = 𝑦 ) ) ) |
9 |
7 8
|
bitr4i |
⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝑦 ) ) |
10 |
9
|
exbii |
⊢ ( ∃ 𝑦 ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 = 𝑦 ) ↔ ∃ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝑦 ) ) |
11 |
2 5 10
|
3bitri |
⊢ ( ∃* 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝑦 ) ) |