Metamath Proof Explorer


Theorem rmo2i

Description: Condition implying restricted "at most one". (Contributed by NM, 17-Jun-2017)

Ref Expression
Hypothesis rmo2.1 𝑦 𝜑
Assertion rmo2i ( ∃ 𝑦𝐴𝑥𝐴 ( 𝜑𝑥 = 𝑦 ) → ∃* 𝑥𝐴 𝜑 )

Proof

Step Hyp Ref Expression
1 rmo2.1 𝑦 𝜑
2 rexex ( ∃ 𝑦𝐴𝑥𝐴 ( 𝜑𝑥 = 𝑦 ) → ∃ 𝑦𝑥𝐴 ( 𝜑𝑥 = 𝑦 ) )
3 1 rmo2 ( ∃* 𝑥𝐴 𝜑 ↔ ∃ 𝑦𝑥𝐴 ( 𝜑𝑥 = 𝑦 ) )
4 2 3 sylibr ( ∃ 𝑦𝐴𝑥𝐴 ( 𝜑𝑥 = 𝑦 ) → ∃* 𝑥𝐴 𝜑 )