| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rmo2.1 | ⊢ Ⅎ 𝑦 𝜑 | 
						
							| 2 |  | df-rmo | ⊢ ( ∃* 𝑥  ∈  𝐴 𝜑  ↔  ∃* 𝑥 ( 𝑥  ∈  𝐴  ∧  𝜑 ) ) | 
						
							| 3 |  | sban | ⊢ ( [ 𝑦  /  𝑥 ] ( 𝑥  ∈  𝐴  ∧  𝜑 )  ↔  ( [ 𝑦  /  𝑥 ] 𝑥  ∈  𝐴  ∧  [ 𝑦  /  𝑥 ] 𝜑 ) ) | 
						
							| 4 |  | clelsb1 | ⊢ ( [ 𝑦  /  𝑥 ] 𝑥  ∈  𝐴  ↔  𝑦  ∈  𝐴 ) | 
						
							| 5 | 3 4 | bianbi | ⊢ ( [ 𝑦  /  𝑥 ] ( 𝑥  ∈  𝐴  ∧  𝜑 )  ↔  ( 𝑦  ∈  𝐴  ∧  [ 𝑦  /  𝑥 ] 𝜑 ) ) | 
						
							| 6 | 5 | anbi2i | ⊢ ( ( ( 𝑥  ∈  𝐴  ∧  𝜑 )  ∧  [ 𝑦  /  𝑥 ] ( 𝑥  ∈  𝐴  ∧  𝜑 ) )  ↔  ( ( 𝑥  ∈  𝐴  ∧  𝜑 )  ∧  ( 𝑦  ∈  𝐴  ∧  [ 𝑦  /  𝑥 ] 𝜑 ) ) ) | 
						
							| 7 |  | an4 | ⊢ ( ( ( 𝑥  ∈  𝐴  ∧  𝜑 )  ∧  ( 𝑦  ∈  𝐴  ∧  [ 𝑦  /  𝑥 ] 𝜑 ) )  ↔  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝜑  ∧  [ 𝑦  /  𝑥 ] 𝜑 ) ) ) | 
						
							| 8 |  | ancom | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ↔  ( 𝑦  ∈  𝐴  ∧  𝑥  ∈  𝐴 ) ) | 
						
							| 9 | 8 | anbi1i | ⊢ ( ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝜑  ∧  [ 𝑦  /  𝑥 ] 𝜑 ) )  ↔  ( ( 𝑦  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  ∧  ( 𝜑  ∧  [ 𝑦  /  𝑥 ] 𝜑 ) ) ) | 
						
							| 10 | 6 7 9 | 3bitri | ⊢ ( ( ( 𝑥  ∈  𝐴  ∧  𝜑 )  ∧  [ 𝑦  /  𝑥 ] ( 𝑥  ∈  𝐴  ∧  𝜑 ) )  ↔  ( ( 𝑦  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  ∧  ( 𝜑  ∧  [ 𝑦  /  𝑥 ] 𝜑 ) ) ) | 
						
							| 11 | 10 | imbi1i | ⊢ ( ( ( ( 𝑥  ∈  𝐴  ∧  𝜑 )  ∧  [ 𝑦  /  𝑥 ] ( 𝑥  ∈  𝐴  ∧  𝜑 ) )  →  𝑥  =  𝑦 )  ↔  ( ( ( 𝑦  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  ∧  ( 𝜑  ∧  [ 𝑦  /  𝑥 ] 𝜑 ) )  →  𝑥  =  𝑦 ) ) | 
						
							| 12 |  | impexp | ⊢ ( ( ( ( 𝑦  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  ∧  ( 𝜑  ∧  [ 𝑦  /  𝑥 ] 𝜑 ) )  →  𝑥  =  𝑦 )  ↔  ( ( 𝑦  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝜑  ∧  [ 𝑦  /  𝑥 ] 𝜑 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 13 |  | impexp | ⊢ ( ( ( 𝑦  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝜑  ∧  [ 𝑦  /  𝑥 ] 𝜑 )  →  𝑥  =  𝑦 ) )  ↔  ( 𝑦  ∈  𝐴  →  ( 𝑥  ∈  𝐴  →  ( ( 𝜑  ∧  [ 𝑦  /  𝑥 ] 𝜑 )  →  𝑥  =  𝑦 ) ) ) ) | 
						
							| 14 | 11 12 13 | 3bitri | ⊢ ( ( ( ( 𝑥  ∈  𝐴  ∧  𝜑 )  ∧  [ 𝑦  /  𝑥 ] ( 𝑥  ∈  𝐴  ∧  𝜑 ) )  →  𝑥  =  𝑦 )  ↔  ( 𝑦  ∈  𝐴  →  ( 𝑥  ∈  𝐴  →  ( ( 𝜑  ∧  [ 𝑦  /  𝑥 ] 𝜑 )  →  𝑥  =  𝑦 ) ) ) ) | 
						
							| 15 | 14 | albii | ⊢ ( ∀ 𝑦 ( ( ( 𝑥  ∈  𝐴  ∧  𝜑 )  ∧  [ 𝑦  /  𝑥 ] ( 𝑥  ∈  𝐴  ∧  𝜑 ) )  →  𝑥  =  𝑦 )  ↔  ∀ 𝑦 ( 𝑦  ∈  𝐴  →  ( 𝑥  ∈  𝐴  →  ( ( 𝜑  ∧  [ 𝑦  /  𝑥 ] 𝜑 )  →  𝑥  =  𝑦 ) ) ) ) | 
						
							| 16 |  | df-ral | ⊢ ( ∀ 𝑦  ∈  𝐴 ( 𝑥  ∈  𝐴  →  ( ( 𝜑  ∧  [ 𝑦  /  𝑥 ] 𝜑 )  →  𝑥  =  𝑦 ) )  ↔  ∀ 𝑦 ( 𝑦  ∈  𝐴  →  ( 𝑥  ∈  𝐴  →  ( ( 𝜑  ∧  [ 𝑦  /  𝑥 ] 𝜑 )  →  𝑥  =  𝑦 ) ) ) ) | 
						
							| 17 |  | r19.21v | ⊢ ( ∀ 𝑦  ∈  𝐴 ( 𝑥  ∈  𝐴  →  ( ( 𝜑  ∧  [ 𝑦  /  𝑥 ] 𝜑 )  →  𝑥  =  𝑦 ) )  ↔  ( 𝑥  ∈  𝐴  →  ∀ 𝑦  ∈  𝐴 ( ( 𝜑  ∧  [ 𝑦  /  𝑥 ] 𝜑 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 18 | 15 16 17 | 3bitr2i | ⊢ ( ∀ 𝑦 ( ( ( 𝑥  ∈  𝐴  ∧  𝜑 )  ∧  [ 𝑦  /  𝑥 ] ( 𝑥  ∈  𝐴  ∧  𝜑 ) )  →  𝑥  =  𝑦 )  ↔  ( 𝑥  ∈  𝐴  →  ∀ 𝑦  ∈  𝐴 ( ( 𝜑  ∧  [ 𝑦  /  𝑥 ] 𝜑 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 19 | 18 | albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( ( 𝑥  ∈  𝐴  ∧  𝜑 )  ∧  [ 𝑦  /  𝑥 ] ( 𝑥  ∈  𝐴  ∧  𝜑 ) )  →  𝑥  =  𝑦 )  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ∀ 𝑦  ∈  𝐴 ( ( 𝜑  ∧  [ 𝑦  /  𝑥 ] 𝜑 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 20 |  | nfv | ⊢ Ⅎ 𝑦 𝑥  ∈  𝐴 | 
						
							| 21 | 20 1 | nfan | ⊢ Ⅎ 𝑦 ( 𝑥  ∈  𝐴  ∧  𝜑 ) | 
						
							| 22 | 21 | mo3 | ⊢ ( ∃* 𝑥 ( 𝑥  ∈  𝐴  ∧  𝜑 )  ↔  ∀ 𝑥 ∀ 𝑦 ( ( ( 𝑥  ∈  𝐴  ∧  𝜑 )  ∧  [ 𝑦  /  𝑥 ] ( 𝑥  ∈  𝐴  ∧  𝜑 ) )  →  𝑥  =  𝑦 ) ) | 
						
							| 23 |  | df-ral | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( ( 𝜑  ∧  [ 𝑦  /  𝑥 ] 𝜑 )  →  𝑥  =  𝑦 )  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ∀ 𝑦  ∈  𝐴 ( ( 𝜑  ∧  [ 𝑦  /  𝑥 ] 𝜑 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 24 | 19 22 23 | 3bitr4i | ⊢ ( ∃* 𝑥 ( 𝑥  ∈  𝐴  ∧  𝜑 )  ↔  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( ( 𝜑  ∧  [ 𝑦  /  𝑥 ] 𝜑 )  →  𝑥  =  𝑦 ) ) | 
						
							| 25 | 2 24 | bitri | ⊢ ( ∃* 𝑥  ∈  𝐴 𝜑  ↔  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( ( 𝜑  ∧  [ 𝑦  /  𝑥 ] 𝜑 )  →  𝑥  =  𝑦 ) ) |