Step |
Hyp |
Ref |
Expression |
1 |
|
rmo3f.1 |
⊢ Ⅎ 𝑥 𝐴 |
2 |
|
rmo3f.2 |
⊢ Ⅎ 𝑦 𝐴 |
3 |
|
rmo3f.3 |
⊢ Ⅎ 𝑦 𝜑 |
4 |
|
df-rmo |
⊢ ( ∃* 𝑥 ∈ 𝐴 𝜑 ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) |
5 |
|
sban |
⊢ ( [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( [ 𝑦 / 𝑥 ] 𝑥 ∈ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
6 |
1
|
clelsb1fw |
⊢ ( [ 𝑦 / 𝑥 ] 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) |
7 |
6
|
anbi1i |
⊢ ( ( [ 𝑦 / 𝑥 ] 𝑥 ∈ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ( 𝑦 ∈ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
8 |
5 7
|
bitri |
⊢ ( [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( 𝑦 ∈ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
9 |
8
|
anbi2i |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ( 𝑦 ∈ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
10 |
|
an4 |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ( 𝑦 ∈ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
11 |
|
ancom |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) |
12 |
11
|
anbi1i |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) ↔ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
13 |
9 10 12
|
3bitri |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ↔ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
14 |
13
|
imbi1i |
⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) → 𝑥 = 𝑦 ) ↔ ( ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) → 𝑥 = 𝑦 ) ) |
15 |
|
impexp |
⊢ ( ( ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) → 𝑥 = 𝑦 ) ↔ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ) |
16 |
|
impexp |
⊢ ( ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ↔ ( 𝑦 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 → ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ) ) |
17 |
14 15 16
|
3bitri |
⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) → 𝑥 = 𝑦 ) ↔ ( 𝑦 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 → ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ) ) |
18 |
17
|
albii |
⊢ ( ∀ 𝑦 ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 → ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ) ) |
19 |
|
df-ral |
⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝐴 → ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 → ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ) ) |
20 |
2
|
nfcri |
⊢ Ⅎ 𝑦 𝑥 ∈ 𝐴 |
21 |
20
|
r19.21 |
⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝐴 → ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ↔ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐴 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ) |
22 |
18 19 21
|
3bitr2i |
⊢ ( ∀ 𝑦 ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) → 𝑥 = 𝑦 ) ↔ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐴 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ) |
23 |
22
|
albii |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐴 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ) |
24 |
20 3
|
nfan |
⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) |
25 |
24
|
mo3 |
⊢ ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) → 𝑥 = 𝑦 ) ) |
26 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐴 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ) |
27 |
23 25 26
|
3bitr4i |
⊢ ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) |
28 |
4 27
|
bitri |
⊢ ( ∃* 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) |