Step |
Hyp |
Ref |
Expression |
1 |
|
rmo4.1 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
df-rmo |
⊢ ( ∃* 𝑥 ∈ 𝐴 𝜑 ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) |
3 |
|
an4 |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ) |
4 |
|
ancom |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) |
5 |
4
|
anbi1i |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ↔ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ) |
6 |
3 5
|
bitri |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ↔ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ) |
7 |
6
|
imbi1i |
⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) → 𝑥 = 𝑦 ) ↔ ( ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝜑 ∧ 𝜓 ) ) → 𝑥 = 𝑦 ) ) |
8 |
|
impexp |
⊢ ( ( ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝜑 ∧ 𝜓 ) ) → 𝑥 = 𝑦 ) ↔ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ) ) |
9 |
|
impexp |
⊢ ( ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ) ↔ ( 𝑦 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 → ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ) ) ) |
10 |
7 8 9
|
3bitri |
⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) → 𝑥 = 𝑦 ) ↔ ( 𝑦 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 → ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ) ) ) |
11 |
10
|
albii |
⊢ ( ∀ 𝑦 ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 → ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ) ) ) |
12 |
|
df-ral |
⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝐴 → ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 → ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ) ) ) |
13 |
|
r19.21v |
⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∈ 𝐴 → ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ) ↔ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐴 ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ) ) |
14 |
11 12 13
|
3bitr2i |
⊢ ( ∀ 𝑦 ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) → 𝑥 = 𝑦 ) ↔ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐴 ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ) ) |
15 |
14
|
albii |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐴 ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ) ) |
16 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
17 |
16 1
|
anbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ) |
18 |
17
|
mo4 |
⊢ ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) → 𝑥 = 𝑦 ) ) |
19 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐴 ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ) ) |
20 |
15 18 19
|
3bitr4i |
⊢ ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ) |
21 |
2 20
|
bitri |
⊢ ( ∃* 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ) |