Metamath Proof Explorer


Theorem rmo4

Description: Restricted "at most one" using implicit substitution. (Contributed by NM, 24-Oct-2006) (Revised by NM, 16-Jun-2017)

Ref Expression
Hypothesis rmo4.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
Assertion rmo4 ( ∃* 𝑥𝐴 𝜑 ↔ ∀ 𝑥𝐴𝑦𝐴 ( ( 𝜑𝜓 ) → 𝑥 = 𝑦 ) )

Proof

Step Hyp Ref Expression
1 rmo4.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
2 df-rmo ( ∃* 𝑥𝐴 𝜑 ↔ ∃* 𝑥 ( 𝑥𝐴𝜑 ) )
3 an4 ( ( ( 𝑥𝐴𝜑 ) ∧ ( 𝑦𝐴𝜓 ) ) ↔ ( ( 𝑥𝐴𝑦𝐴 ) ∧ ( 𝜑𝜓 ) ) )
4 ancom ( ( 𝑥𝐴𝑦𝐴 ) ↔ ( 𝑦𝐴𝑥𝐴 ) )
5 3 4 bianbi ( ( ( 𝑥𝐴𝜑 ) ∧ ( 𝑦𝐴𝜓 ) ) ↔ ( ( 𝑦𝐴𝑥𝐴 ) ∧ ( 𝜑𝜓 ) ) )
6 5 imbi1i ( ( ( ( 𝑥𝐴𝜑 ) ∧ ( 𝑦𝐴𝜓 ) ) → 𝑥 = 𝑦 ) ↔ ( ( ( 𝑦𝐴𝑥𝐴 ) ∧ ( 𝜑𝜓 ) ) → 𝑥 = 𝑦 ) )
7 impexp ( ( ( ( 𝑦𝐴𝑥𝐴 ) ∧ ( 𝜑𝜓 ) ) → 𝑥 = 𝑦 ) ↔ ( ( 𝑦𝐴𝑥𝐴 ) → ( ( 𝜑𝜓 ) → 𝑥 = 𝑦 ) ) )
8 impexp ( ( ( 𝑦𝐴𝑥𝐴 ) → ( ( 𝜑𝜓 ) → 𝑥 = 𝑦 ) ) ↔ ( 𝑦𝐴 → ( 𝑥𝐴 → ( ( 𝜑𝜓 ) → 𝑥 = 𝑦 ) ) ) )
9 6 7 8 3bitri ( ( ( ( 𝑥𝐴𝜑 ) ∧ ( 𝑦𝐴𝜓 ) ) → 𝑥 = 𝑦 ) ↔ ( 𝑦𝐴 → ( 𝑥𝐴 → ( ( 𝜑𝜓 ) → 𝑥 = 𝑦 ) ) ) )
10 9 albii ( ∀ 𝑦 ( ( ( 𝑥𝐴𝜑 ) ∧ ( 𝑦𝐴𝜓 ) ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑦 ( 𝑦𝐴 → ( 𝑥𝐴 → ( ( 𝜑𝜓 ) → 𝑥 = 𝑦 ) ) ) )
11 df-ral ( ∀ 𝑦𝐴 ( 𝑥𝐴 → ( ( 𝜑𝜓 ) → 𝑥 = 𝑦 ) ) ↔ ∀ 𝑦 ( 𝑦𝐴 → ( 𝑥𝐴 → ( ( 𝜑𝜓 ) → 𝑥 = 𝑦 ) ) ) )
12 r19.21v ( ∀ 𝑦𝐴 ( 𝑥𝐴 → ( ( 𝜑𝜓 ) → 𝑥 = 𝑦 ) ) ↔ ( 𝑥𝐴 → ∀ 𝑦𝐴 ( ( 𝜑𝜓 ) → 𝑥 = 𝑦 ) ) )
13 10 11 12 3bitr2i ( ∀ 𝑦 ( ( ( 𝑥𝐴𝜑 ) ∧ ( 𝑦𝐴𝜓 ) ) → 𝑥 = 𝑦 ) ↔ ( 𝑥𝐴 → ∀ 𝑦𝐴 ( ( 𝜑𝜓 ) → 𝑥 = 𝑦 ) ) )
14 13 albii ( ∀ 𝑥𝑦 ( ( ( 𝑥𝐴𝜑 ) ∧ ( 𝑦𝐴𝜓 ) ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝑥𝐴 → ∀ 𝑦𝐴 ( ( 𝜑𝜓 ) → 𝑥 = 𝑦 ) ) )
15 eleq1w ( 𝑥 = 𝑦 → ( 𝑥𝐴𝑦𝐴 ) )
16 15 1 anbi12d ( 𝑥 = 𝑦 → ( ( 𝑥𝐴𝜑 ) ↔ ( 𝑦𝐴𝜓 ) ) )
17 16 mo4 ( ∃* 𝑥 ( 𝑥𝐴𝜑 ) ↔ ∀ 𝑥𝑦 ( ( ( 𝑥𝐴𝜑 ) ∧ ( 𝑦𝐴𝜓 ) ) → 𝑥 = 𝑦 ) )
18 df-ral ( ∀ 𝑥𝐴𝑦𝐴 ( ( 𝜑𝜓 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝑥𝐴 → ∀ 𝑦𝐴 ( ( 𝜑𝜓 ) → 𝑥 = 𝑦 ) ) )
19 14 17 18 3bitr4i ( ∃* 𝑥 ( 𝑥𝐴𝜑 ) ↔ ∀ 𝑥𝐴𝑦𝐴 ( ( 𝜑𝜓 ) → 𝑥 = 𝑦 ) )
20 2 19 bitri ( ∃* 𝑥𝐴 𝜑 ↔ ∀ 𝑥𝐴𝑦𝐴 ( ( 𝜑𝜓 ) → 𝑥 = 𝑦 ) )