Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The universal class
rmo4f
Metamath Proof Explorer
Description: Restricted "at most one" using implicit substitution. (Contributed by NM , 24-Oct-2006) (Revised by Thierry Arnoux , 11-Oct-2016) (Revised by Thierry Arnoux , 8-Mar-2017) (Revised by Thierry Arnoux , 8-Oct-2017)
Ref
Expression
Hypotheses
rmo4f.1
⊢ Ⅎ 𝑥 𝐴
rmo4f.2
⊢ Ⅎ 𝑦 𝐴
rmo4f.3
⊢ Ⅎ 𝑥 𝜓
rmo4f.4
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) )
Assertion
rmo4f
⊢ ( ∃* 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) )
Proof
Step
Hyp
Ref
Expression
1
rmo4f.1
⊢ Ⅎ 𝑥 𝐴
2
rmo4f.2
⊢ Ⅎ 𝑦 𝐴
3
rmo4f.3
⊢ Ⅎ 𝑥 𝜓
4
rmo4f.4
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) )
5
nfv
⊢ Ⅎ 𝑦 𝜑
6
1 2 5
rmo3f
⊢ ( ∃* 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) )
7
3 4
sbiev
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 )
8
7
anbi2i
⊢ ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ( 𝜑 ∧ 𝜓 ) )
9
8
imbi1i
⊢ ( ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ↔ ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) )
10
9
2ralbii
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) )
11
6 10
bitri
⊢ ( ∃* 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) )