Metamath Proof Explorer


Theorem rmo5

Description: Restricted "at most one" in term of uniqueness. (Contributed by NM, 16-Jun-2017)

Ref Expression
Assertion rmo5 ( ∃* 𝑥𝐴 𝜑 ↔ ( ∃ 𝑥𝐴 𝜑 → ∃! 𝑥𝐴 𝜑 ) )

Proof

Step Hyp Ref Expression
1 moeu ( ∃* 𝑥 ( 𝑥𝐴𝜑 ) ↔ ( ∃ 𝑥 ( 𝑥𝐴𝜑 ) → ∃! 𝑥 ( 𝑥𝐴𝜑 ) ) )
2 df-rmo ( ∃* 𝑥𝐴 𝜑 ↔ ∃* 𝑥 ( 𝑥𝐴𝜑 ) )
3 df-rex ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑥 ( 𝑥𝐴𝜑 ) )
4 df-reu ( ∃! 𝑥𝐴 𝜑 ↔ ∃! 𝑥 ( 𝑥𝐴𝜑 ) )
5 3 4 imbi12i ( ( ∃ 𝑥𝐴 𝜑 → ∃! 𝑥𝐴 𝜑 ) ↔ ( ∃ 𝑥 ( 𝑥𝐴𝜑 ) → ∃! 𝑥 ( 𝑥𝐴𝜑 ) ) )
6 1 2 5 3bitr4i ( ∃* 𝑥𝐴 𝜑 ↔ ( ∃ 𝑥𝐴 𝜑 → ∃! 𝑥𝐴 𝜑 ) )