Metamath Proof Explorer


Theorem rmoan

Description: Restricted "at most one" still holds when a conjunct is added. (Contributed by NM, 16-Jun-2017)

Ref Expression
Assertion rmoan ( ∃* 𝑥𝐴 𝜑 → ∃* 𝑥𝐴 ( 𝜓𝜑 ) )

Proof

Step Hyp Ref Expression
1 moan ( ∃* 𝑥 ( 𝑥𝐴𝜑 ) → ∃* 𝑥 ( 𝜓 ∧ ( 𝑥𝐴𝜑 ) ) )
2 an12 ( ( 𝜓 ∧ ( 𝑥𝐴𝜑 ) ) ↔ ( 𝑥𝐴 ∧ ( 𝜓𝜑 ) ) )
3 2 mobii ( ∃* 𝑥 ( 𝜓 ∧ ( 𝑥𝐴𝜑 ) ) ↔ ∃* 𝑥 ( 𝑥𝐴 ∧ ( 𝜓𝜑 ) ) )
4 1 3 sylib ( ∃* 𝑥 ( 𝑥𝐴𝜑 ) → ∃* 𝑥 ( 𝑥𝐴 ∧ ( 𝜓𝜑 ) ) )
5 df-rmo ( ∃* 𝑥𝐴 𝜑 ↔ ∃* 𝑥 ( 𝑥𝐴𝜑 ) )
6 df-rmo ( ∃* 𝑥𝐴 ( 𝜓𝜑 ) ↔ ∃* 𝑥 ( 𝑥𝐴 ∧ ( 𝜓𝜑 ) ) )
7 4 5 6 3imtr4i ( ∃* 𝑥𝐴 𝜑 → ∃* 𝑥𝐴 ( 𝜓𝜑 ) )