Description: Obsolete version of rmoanid as of 12-Jan-2025. (Contributed by Peter Mazsa, 24-May-2018) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rmoanidOLD | ⊢ ( ∃* 𝑥 ∈ 𝐴 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ∃* 𝑥 ∈ 𝐴 𝜑 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | anabs5 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
| 2 | 1 | mobii | ⊢ ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | 
| 3 | df-rmo | ⊢ ( ∃* 𝑥 ∈ 𝐴 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) | |
| 4 | df-rmo | ⊢ ( ∃* 𝑥 ∈ 𝐴 𝜑 ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
| 5 | 2 3 4 | 3bitr4i | ⊢ ( ∃* 𝑥 ∈ 𝐴 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ∃* 𝑥 ∈ 𝐴 𝜑 ) |