Step |
Hyp |
Ref |
Expression |
1 |
|
rmoanim.1 |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
impexp |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ↔ ( 𝜑 → ( 𝜓 → 𝑥 = 𝑦 ) ) ) |
3 |
2
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝜑 → ( 𝜓 → 𝑥 = 𝑦 ) ) ) |
4 |
1
|
r19.21 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → ( 𝜓 → 𝑥 = 𝑦 ) ) ↔ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) ) |
5 |
3 4
|
bitri |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ↔ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) ) |
6 |
5
|
exbii |
⊢ ( ∃ 𝑦 ∀ 𝑥 ∈ 𝐴 ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ↔ ∃ 𝑦 ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) ) |
7 |
|
df-rmo |
⊢ ( ∃* 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ ( 𝜑 ∧ 𝜓 ) ) ) |
8 |
|
df-mo |
⊢ ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ ( 𝜑 ∧ 𝜓 ) ) ↔ ∃ 𝑦 ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ ( 𝜑 ∧ 𝜓 ) ) → 𝑥 = 𝑦 ) ) |
9 |
|
impexp |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ ( 𝜑 ∧ 𝜓 ) ) → 𝑥 = 𝑦 ) ↔ ( 𝑥 ∈ 𝐴 → ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ) ) |
10 |
9
|
albii |
⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ ( 𝜑 ∧ 𝜓 ) ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ) ) |
11 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ) ) |
12 |
10 11
|
bitr4i |
⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ ( 𝜑 ∧ 𝜓 ) ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐴 ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ) |
13 |
12
|
exbii |
⊢ ( ∃ 𝑦 ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ ( 𝜑 ∧ 𝜓 ) ) → 𝑥 = 𝑦 ) ↔ ∃ 𝑦 ∀ 𝑥 ∈ 𝐴 ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ) |
14 |
7 8 13
|
3bitri |
⊢ ( ∃* 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ↔ ∃ 𝑦 ∀ 𝑥 ∈ 𝐴 ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ) |
15 |
|
df-rmo |
⊢ ( ∃* 𝑥 ∈ 𝐴 𝜓 ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) |
16 |
|
df-mo |
⊢ ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ∃ 𝑦 ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ) |
17 |
|
impexp |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ↔ ( 𝑥 ∈ 𝐴 → ( 𝜓 → 𝑥 = 𝑦 ) ) ) |
18 |
17
|
albii |
⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝜓 → 𝑥 = 𝑦 ) ) ) |
19 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝜓 → 𝑥 = 𝑦 ) ) ) |
20 |
18 19
|
bitr4i |
⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) |
21 |
20
|
exbii |
⊢ ( ∃ 𝑦 ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ↔ ∃ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) |
22 |
15 16 21
|
3bitri |
⊢ ( ∃* 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) |
23 |
22
|
imbi2i |
⊢ ( ( 𝜑 → ∃* 𝑥 ∈ 𝐴 𝜓 ) ↔ ( 𝜑 → ∃ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) ) |
24 |
|
19.37v |
⊢ ( ∃ 𝑦 ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) ↔ ( 𝜑 → ∃ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) ) |
25 |
23 24
|
bitr4i |
⊢ ( ( 𝜑 → ∃* 𝑥 ∈ 𝐴 𝜓 ) ↔ ∃ 𝑦 ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) ) |
26 |
6 14 25
|
3bitr4i |
⊢ ( ∃* 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 → ∃* 𝑥 ∈ 𝐴 𝜓 ) ) |