| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rmoanim.1 | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 2 |  | impexp | ⊢ ( ( ( 𝜑  ∧  𝜓 )  →  𝑥  =  𝑦 )  ↔  ( 𝜑  →  ( 𝜓  →  𝑥  =  𝑦 ) ) ) | 
						
							| 3 | 2 | ralbii | ⊢ ( ∀ 𝑥  ∈  𝐴 ( ( 𝜑  ∧  𝜓 )  →  𝑥  =  𝑦 )  ↔  ∀ 𝑥  ∈  𝐴 ( 𝜑  →  ( 𝜓  →  𝑥  =  𝑦 ) ) ) | 
						
							| 4 | 1 | r19.21 | ⊢ ( ∀ 𝑥  ∈  𝐴 ( 𝜑  →  ( 𝜓  →  𝑥  =  𝑦 ) )  ↔  ( 𝜑  →  ∀ 𝑥  ∈  𝐴 ( 𝜓  →  𝑥  =  𝑦 ) ) ) | 
						
							| 5 | 3 4 | bitri | ⊢ ( ∀ 𝑥  ∈  𝐴 ( ( 𝜑  ∧  𝜓 )  →  𝑥  =  𝑦 )  ↔  ( 𝜑  →  ∀ 𝑥  ∈  𝐴 ( 𝜓  →  𝑥  =  𝑦 ) ) ) | 
						
							| 6 | 5 | exbii | ⊢ ( ∃ 𝑦 ∀ 𝑥  ∈  𝐴 ( ( 𝜑  ∧  𝜓 )  →  𝑥  =  𝑦 )  ↔  ∃ 𝑦 ( 𝜑  →  ∀ 𝑥  ∈  𝐴 ( 𝜓  →  𝑥  =  𝑦 ) ) ) | 
						
							| 7 |  | df-rmo | ⊢ ( ∃* 𝑥  ∈  𝐴 ( 𝜑  ∧  𝜓 )  ↔  ∃* 𝑥 ( 𝑥  ∈  𝐴  ∧  ( 𝜑  ∧  𝜓 ) ) ) | 
						
							| 8 |  | df-mo | ⊢ ( ∃* 𝑥 ( 𝑥  ∈  𝐴  ∧  ( 𝜑  ∧  𝜓 ) )  ↔  ∃ 𝑦 ∀ 𝑥 ( ( 𝑥  ∈  𝐴  ∧  ( 𝜑  ∧  𝜓 ) )  →  𝑥  =  𝑦 ) ) | 
						
							| 9 |  | impexp | ⊢ ( ( ( 𝑥  ∈  𝐴  ∧  ( 𝜑  ∧  𝜓 ) )  →  𝑥  =  𝑦 )  ↔  ( 𝑥  ∈  𝐴  →  ( ( 𝜑  ∧  𝜓 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 10 | 9 | albii | ⊢ ( ∀ 𝑥 ( ( 𝑥  ∈  𝐴  ∧  ( 𝜑  ∧  𝜓 ) )  →  𝑥  =  𝑦 )  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ( ( 𝜑  ∧  𝜓 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 11 |  | df-ral | ⊢ ( ∀ 𝑥  ∈  𝐴 ( ( 𝜑  ∧  𝜓 )  →  𝑥  =  𝑦 )  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ( ( 𝜑  ∧  𝜓 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 12 | 10 11 | bitr4i | ⊢ ( ∀ 𝑥 ( ( 𝑥  ∈  𝐴  ∧  ( 𝜑  ∧  𝜓 ) )  →  𝑥  =  𝑦 )  ↔  ∀ 𝑥  ∈  𝐴 ( ( 𝜑  ∧  𝜓 )  →  𝑥  =  𝑦 ) ) | 
						
							| 13 | 12 | exbii | ⊢ ( ∃ 𝑦 ∀ 𝑥 ( ( 𝑥  ∈  𝐴  ∧  ( 𝜑  ∧  𝜓 ) )  →  𝑥  =  𝑦 )  ↔  ∃ 𝑦 ∀ 𝑥  ∈  𝐴 ( ( 𝜑  ∧  𝜓 )  →  𝑥  =  𝑦 ) ) | 
						
							| 14 | 7 8 13 | 3bitri | ⊢ ( ∃* 𝑥  ∈  𝐴 ( 𝜑  ∧  𝜓 )  ↔  ∃ 𝑦 ∀ 𝑥  ∈  𝐴 ( ( 𝜑  ∧  𝜓 )  →  𝑥  =  𝑦 ) ) | 
						
							| 15 |  | df-rmo | ⊢ ( ∃* 𝑥  ∈  𝐴 𝜓  ↔  ∃* 𝑥 ( 𝑥  ∈  𝐴  ∧  𝜓 ) ) | 
						
							| 16 |  | df-mo | ⊢ ( ∃* 𝑥 ( 𝑥  ∈  𝐴  ∧  𝜓 )  ↔  ∃ 𝑦 ∀ 𝑥 ( ( 𝑥  ∈  𝐴  ∧  𝜓 )  →  𝑥  =  𝑦 ) ) | 
						
							| 17 |  | impexp | ⊢ ( ( ( 𝑥  ∈  𝐴  ∧  𝜓 )  →  𝑥  =  𝑦 )  ↔  ( 𝑥  ∈  𝐴  →  ( 𝜓  →  𝑥  =  𝑦 ) ) ) | 
						
							| 18 | 17 | albii | ⊢ ( ∀ 𝑥 ( ( 𝑥  ∈  𝐴  ∧  𝜓 )  →  𝑥  =  𝑦 )  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ( 𝜓  →  𝑥  =  𝑦 ) ) ) | 
						
							| 19 |  | df-ral | ⊢ ( ∀ 𝑥  ∈  𝐴 ( 𝜓  →  𝑥  =  𝑦 )  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ( 𝜓  →  𝑥  =  𝑦 ) ) ) | 
						
							| 20 | 18 19 | bitr4i | ⊢ ( ∀ 𝑥 ( ( 𝑥  ∈  𝐴  ∧  𝜓 )  →  𝑥  =  𝑦 )  ↔  ∀ 𝑥  ∈  𝐴 ( 𝜓  →  𝑥  =  𝑦 ) ) | 
						
							| 21 | 20 | exbii | ⊢ ( ∃ 𝑦 ∀ 𝑥 ( ( 𝑥  ∈  𝐴  ∧  𝜓 )  →  𝑥  =  𝑦 )  ↔  ∃ 𝑦 ∀ 𝑥  ∈  𝐴 ( 𝜓  →  𝑥  =  𝑦 ) ) | 
						
							| 22 | 15 16 21 | 3bitri | ⊢ ( ∃* 𝑥  ∈  𝐴 𝜓  ↔  ∃ 𝑦 ∀ 𝑥  ∈  𝐴 ( 𝜓  →  𝑥  =  𝑦 ) ) | 
						
							| 23 | 22 | imbi2i | ⊢ ( ( 𝜑  →  ∃* 𝑥  ∈  𝐴 𝜓 )  ↔  ( 𝜑  →  ∃ 𝑦 ∀ 𝑥  ∈  𝐴 ( 𝜓  →  𝑥  =  𝑦 ) ) ) | 
						
							| 24 |  | 19.37v | ⊢ ( ∃ 𝑦 ( 𝜑  →  ∀ 𝑥  ∈  𝐴 ( 𝜓  →  𝑥  =  𝑦 ) )  ↔  ( 𝜑  →  ∃ 𝑦 ∀ 𝑥  ∈  𝐴 ( 𝜓  →  𝑥  =  𝑦 ) ) ) | 
						
							| 25 | 23 24 | bitr4i | ⊢ ( ( 𝜑  →  ∃* 𝑥  ∈  𝐴 𝜓 )  ↔  ∃ 𝑦 ( 𝜑  →  ∀ 𝑥  ∈  𝐴 ( 𝜓  →  𝑥  =  𝑦 ) ) ) | 
						
							| 26 | 6 14 25 | 3bitr4i | ⊢ ( ∃* 𝑥  ∈  𝐴 ( 𝜑  ∧  𝜓 )  ↔  ( 𝜑  →  ∃* 𝑥  ∈  𝐴 𝜓 ) ) |