Step |
Hyp |
Ref |
Expression |
1 |
|
rmoanim.1 |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
impexp |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ↔ ( 𝜑 → ( 𝜓 → 𝑥 = 𝑦 ) ) ) |
3 |
2
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝜑 → ( 𝜓 → 𝑥 = 𝑦 ) ) ) |
4 |
1
|
r19.21 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → ( 𝜓 → 𝑥 = 𝑦 ) ) ↔ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) ) |
5 |
3 4
|
bitri |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ↔ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) ) |
6 |
5
|
exbii |
⊢ ( ∃ 𝑦 ∀ 𝑥 ∈ 𝐴 ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ↔ ∃ 𝑦 ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) ) |
7 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝜑 ∧ 𝜓 ) |
8 |
7
|
rmo2 |
⊢ ( ∃* 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ↔ ∃ 𝑦 ∀ 𝑥 ∈ 𝐴 ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ) |
9 |
|
nfv |
⊢ Ⅎ 𝑦 𝜓 |
10 |
9
|
rmo2 |
⊢ ( ∃* 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) |
11 |
10
|
imbi2i |
⊢ ( ( 𝜑 → ∃* 𝑥 ∈ 𝐴 𝜓 ) ↔ ( 𝜑 → ∃ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) ) |
12 |
|
19.37v |
⊢ ( ∃ 𝑦 ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) ↔ ( 𝜑 → ∃ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) ) |
13 |
11 12
|
bitr4i |
⊢ ( ( 𝜑 → ∃* 𝑥 ∈ 𝐴 𝜓 ) ↔ ∃ 𝑦 ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) ) |
14 |
6 8 13
|
3bitr4i |
⊢ ( ∃* 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 → ∃* 𝑥 ∈ 𝐴 𝜓 ) ) |