| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rmoi.b | ⊢ ( 𝑥  =  𝐵  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 2 |  | rmoi.c | ⊢ ( 𝑥  =  𝐶  →  ( 𝜑  ↔  𝜒 ) ) | 
						
							| 3 |  | df-rmo | ⊢ ( ∃* 𝑥  ∈  𝐴 𝜑  ↔  ∃* 𝑥 ( 𝑥  ∈  𝐴  ∧  𝜑 ) ) | 
						
							| 4 |  | simprl | ⊢ ( ( ∃* 𝑥 ( 𝑥  ∈  𝐴  ∧  𝜑 )  ∧  ( 𝐵  ∈  𝐴  ∧  𝜓 ) )  →  𝐵  ∈  𝐴 ) | 
						
							| 5 |  | eleq1 | ⊢ ( 𝐵  =  𝐶  →  ( 𝐵  ∈  𝐴  ↔  𝐶  ∈  𝐴 ) ) | 
						
							| 6 | 4 5 | syl5ibcom | ⊢ ( ( ∃* 𝑥 ( 𝑥  ∈  𝐴  ∧  𝜑 )  ∧  ( 𝐵  ∈  𝐴  ∧  𝜓 ) )  →  ( 𝐵  =  𝐶  →  𝐶  ∈  𝐴 ) ) | 
						
							| 7 |  | simpl | ⊢ ( ( 𝐶  ∈  𝐴  ∧  𝜒 )  →  𝐶  ∈  𝐴 ) | 
						
							| 8 | 7 | a1i | ⊢ ( ( ∃* 𝑥 ( 𝑥  ∈  𝐴  ∧  𝜑 )  ∧  ( 𝐵  ∈  𝐴  ∧  𝜓 ) )  →  ( ( 𝐶  ∈  𝐴  ∧  𝜒 )  →  𝐶  ∈  𝐴 ) ) | 
						
							| 9 | 4 | anim1i | ⊢ ( ( ( ∃* 𝑥 ( 𝑥  ∈  𝐴  ∧  𝜑 )  ∧  ( 𝐵  ∈  𝐴  ∧  𝜓 ) )  ∧  𝐶  ∈  𝐴 )  →  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴 ) ) | 
						
							| 10 |  | simpll | ⊢ ( ( ( ∃* 𝑥 ( 𝑥  ∈  𝐴  ∧  𝜑 )  ∧  ( 𝐵  ∈  𝐴  ∧  𝜓 ) )  ∧  𝐶  ∈  𝐴 )  →  ∃* 𝑥 ( 𝑥  ∈  𝐴  ∧  𝜑 ) ) | 
						
							| 11 |  | simplr | ⊢ ( ( ( ∃* 𝑥 ( 𝑥  ∈  𝐴  ∧  𝜑 )  ∧  ( 𝐵  ∈  𝐴  ∧  𝜓 ) )  ∧  𝐶  ∈  𝐴 )  →  ( 𝐵  ∈  𝐴  ∧  𝜓 ) ) | 
						
							| 12 |  | eleq1 | ⊢ ( 𝑥  =  𝐵  →  ( 𝑥  ∈  𝐴  ↔  𝐵  ∈  𝐴 ) ) | 
						
							| 13 | 12 1 | anbi12d | ⊢ ( 𝑥  =  𝐵  →  ( ( 𝑥  ∈  𝐴  ∧  𝜑 )  ↔  ( 𝐵  ∈  𝐴  ∧  𝜓 ) ) ) | 
						
							| 14 |  | eleq1 | ⊢ ( 𝑥  =  𝐶  →  ( 𝑥  ∈  𝐴  ↔  𝐶  ∈  𝐴 ) ) | 
						
							| 15 | 14 2 | anbi12d | ⊢ ( 𝑥  =  𝐶  →  ( ( 𝑥  ∈  𝐴  ∧  𝜑 )  ↔  ( 𝐶  ∈  𝐴  ∧  𝜒 ) ) ) | 
						
							| 16 | 13 15 | mob | ⊢ ( ( ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴 )  ∧  ∃* 𝑥 ( 𝑥  ∈  𝐴  ∧  𝜑 )  ∧  ( 𝐵  ∈  𝐴  ∧  𝜓 ) )  →  ( 𝐵  =  𝐶  ↔  ( 𝐶  ∈  𝐴  ∧  𝜒 ) ) ) | 
						
							| 17 | 9 10 11 16 | syl3anc | ⊢ ( ( ( ∃* 𝑥 ( 𝑥  ∈  𝐴  ∧  𝜑 )  ∧  ( 𝐵  ∈  𝐴  ∧  𝜓 ) )  ∧  𝐶  ∈  𝐴 )  →  ( 𝐵  =  𝐶  ↔  ( 𝐶  ∈  𝐴  ∧  𝜒 ) ) ) | 
						
							| 18 | 17 | ex | ⊢ ( ( ∃* 𝑥 ( 𝑥  ∈  𝐴  ∧  𝜑 )  ∧  ( 𝐵  ∈  𝐴  ∧  𝜓 ) )  →  ( 𝐶  ∈  𝐴  →  ( 𝐵  =  𝐶  ↔  ( 𝐶  ∈  𝐴  ∧  𝜒 ) ) ) ) | 
						
							| 19 | 6 8 18 | pm5.21ndd | ⊢ ( ( ∃* 𝑥 ( 𝑥  ∈  𝐴  ∧  𝜑 )  ∧  ( 𝐵  ∈  𝐴  ∧  𝜓 ) )  →  ( 𝐵  =  𝐶  ↔  ( 𝐶  ∈  𝐴  ∧  𝜒 ) ) ) | 
						
							| 20 | 3 19 | sylanb | ⊢ ( ( ∃* 𝑥  ∈  𝐴 𝜑  ∧  ( 𝐵  ∈  𝐴  ∧  𝜓 ) )  →  ( 𝐵  =  𝐶  ↔  ( 𝐶  ∈  𝐴  ∧  𝜒 ) ) ) |