Metamath Proof Explorer


Theorem rmobida

Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 16-Jun-2017)

Ref Expression
Hypotheses rmobida.1 𝑥 𝜑
rmobida.2 ( ( 𝜑𝑥𝐴 ) → ( 𝜓𝜒 ) )
Assertion rmobida ( 𝜑 → ( ∃* 𝑥𝐴 𝜓 ↔ ∃* 𝑥𝐴 𝜒 ) )

Proof

Step Hyp Ref Expression
1 rmobida.1 𝑥 𝜑
2 rmobida.2 ( ( 𝜑𝑥𝐴 ) → ( 𝜓𝜒 ) )
3 2 pm5.32da ( 𝜑 → ( ( 𝑥𝐴𝜓 ) ↔ ( 𝑥𝐴𝜒 ) ) )
4 1 3 mobid ( 𝜑 → ( ∃* 𝑥 ( 𝑥𝐴𝜓 ) ↔ ∃* 𝑥 ( 𝑥𝐴𝜒 ) ) )
5 df-rmo ( ∃* 𝑥𝐴 𝜓 ↔ ∃* 𝑥 ( 𝑥𝐴𝜓 ) )
6 df-rmo ( ∃* 𝑥𝐴 𝜒 ↔ ∃* 𝑥 ( 𝑥𝐴𝜒 ) )
7 4 5 6 3bitr4g ( 𝜑 → ( ∃* 𝑥𝐴 𝜓 ↔ ∃* 𝑥𝐴 𝜒 ) )