Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 16-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rmobida.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| rmobida.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) | ||
| Assertion | rmobida | ⊢ ( 𝜑 → ( ∃* 𝑥 ∈ 𝐴 𝜓 ↔ ∃* 𝑥 ∈ 𝐴 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rmobida.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | rmobida.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) | |
| 3 | 2 | pm5.32da | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ) ) |
| 4 | 1 3 | mobid | ⊢ ( 𝜑 → ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ) ) |
| 5 | df-rmo | ⊢ ( ∃* 𝑥 ∈ 𝐴 𝜓 ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) | |
| 6 | df-rmo | ⊢ ( ∃* 𝑥 ∈ 𝐴 𝜒 ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ) | |
| 7 | 4 5 6 | 3bitr4g | ⊢ ( 𝜑 → ( ∃* 𝑥 ∈ 𝐴 𝜓 ↔ ∃* 𝑥 ∈ 𝐴 𝜒 ) ) |