Metamath Proof Explorer


Theorem rmobidv

Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 16-Jun-2017)

Ref Expression
Hypothesis rmobidv.1 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion rmobidv ( 𝜑 → ( ∃* 𝑥𝐴 𝜓 ↔ ∃* 𝑥𝐴 𝜒 ) )

Proof

Step Hyp Ref Expression
1 rmobidv.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 1 adantr ( ( 𝜑𝑥𝐴 ) → ( 𝜓𝜒 ) )
3 2 rmobidva ( 𝜑 → ( ∃* 𝑥𝐴 𝜓 ↔ ∃* 𝑥𝐴 𝜒 ) )