Metamath Proof Explorer
Description: Formula-building rule for restricted existential quantifier (deduction
form). (Contributed by NM, 16-Jun-2017)
|
|
Ref |
Expression |
|
Hypothesis |
rmobidva.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) |
|
Assertion |
rmobidva |
⊢ ( 𝜑 → ( ∃* 𝑥 ∈ 𝐴 𝜓 ↔ ∃* 𝑥 ∈ 𝐴 𝜒 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
rmobidva.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) |
2 |
|
nfv |
⊢ Ⅎ 𝑥 𝜑 |
3 |
2 1
|
rmobida |
⊢ ( 𝜑 → ( ∃* 𝑥 ∈ 𝐴 𝜓 ↔ ∃* 𝑥 ∈ 𝐴 𝜒 ) ) |