Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
Restricted existential uniqueness and at-most-one quantifier
rmobidvaOLD
Metamath Proof Explorer
Description: Obsolete version of rmobidv as of 23-Nov-2024. (Contributed by NM , 16-Jun-2017) (Proof modification is discouraged.)
(New usage is discouraged.)
Ref
Expression
Hypothesis
rmobidvaOLD.1
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 ↔ 𝜒 ) )
Assertion
rmobidvaOLD
⊢ ( 𝜑 → ( ∃* 𝑥 ∈ 𝐴 𝜓 ↔ ∃* 𝑥 ∈ 𝐴 𝜒 ) )
Proof
Step
Hyp
Ref
Expression
1
rmobidvaOLD.1
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 ↔ 𝜒 ) )
2
nfv
⊢ Ⅎ 𝑥 𝜑
3
2 1
rmobida
⊢ ( 𝜑 → ( ∃* 𝑥 ∈ 𝐴 𝜓 ↔ ∃* 𝑥 ∈ 𝐴 𝜒 ) )