Metamath Proof Explorer


Theorem rmobii

Description: Formula-building rule for restricted existential quantifier (inference form). (Contributed by NM, 16-Jun-2017)

Ref Expression
Hypothesis rmobii.1 ( 𝜑𝜓 )
Assertion rmobii ( ∃* 𝑥𝐴 𝜑 ↔ ∃* 𝑥𝐴 𝜓 )

Proof

Step Hyp Ref Expression
1 rmobii.1 ( 𝜑𝜓 )
2 1 a1i ( 𝑥𝐴 → ( 𝜑𝜓 ) )
3 2 rmobiia ( ∃* 𝑥𝐴 𝜑 ↔ ∃* 𝑥𝐴 𝜓 )