Metamath Proof Explorer


Theorem rmobiia

Description: Formula-building rule for restricted existential quantifier (inference form). (Contributed by NM, 16-Jun-2017)

Ref Expression
Hypothesis rmobiia.1 ( 𝑥𝐴 → ( 𝜑𝜓 ) )
Assertion rmobiia ( ∃* 𝑥𝐴 𝜑 ↔ ∃* 𝑥𝐴 𝜓 )

Proof

Step Hyp Ref Expression
1 rmobiia.1 ( 𝑥𝐴 → ( 𝜑𝜓 ) )
2 1 pm5.32i ( ( 𝑥𝐴𝜑 ) ↔ ( 𝑥𝐴𝜓 ) )
3 2 mobii ( ∃* 𝑥 ( 𝑥𝐴𝜑 ) ↔ ∃* 𝑥 ( 𝑥𝐴𝜓 ) )
4 df-rmo ( ∃* 𝑥𝐴 𝜑 ↔ ∃* 𝑥 ( 𝑥𝐴𝜑 ) )
5 df-rmo ( ∃* 𝑥𝐴 𝜓 ↔ ∃* 𝑥 ( 𝑥𝐴𝜓 ) )
6 3 4 5 3bitr4i ( ∃* 𝑥𝐴 𝜑 ↔ ∃* 𝑥𝐴 𝜓 )