Description: Formula-building rule for restricted existential quantifier (inference form). (Contributed by NM, 16-Jun-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rmobiia.1 | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
Assertion | rmobiia | ⊢ ( ∃* 𝑥 ∈ 𝐴 𝜑 ↔ ∃* 𝑥 ∈ 𝐴 𝜓 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rmobiia.1 | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
2 | 1 | pm5.32i | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) |
3 | 2 | mobii | ⊢ ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) |
4 | df-rmo | ⊢ ( ∃* 𝑥 ∈ 𝐴 𝜑 ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
5 | df-rmo | ⊢ ( ∃* 𝑥 ∈ 𝐴 𝜓 ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) | |
6 | 3 4 5 | 3bitr4i | ⊢ ( ∃* 𝑥 ∈ 𝐴 𝜑 ↔ ∃* 𝑥 ∈ 𝐴 𝜓 ) |