| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rmodislmod.v |
⊢ 𝑉 = ( Base ‘ 𝑅 ) |
| 2 |
|
rmodislmod.a |
⊢ + = ( +g ‘ 𝑅 ) |
| 3 |
|
rmodislmod.s |
⊢ · = ( ·𝑠 ‘ 𝑅 ) |
| 4 |
|
rmodislmod.f |
⊢ 𝐹 = ( Scalar ‘ 𝑅 ) |
| 5 |
|
rmodislmod.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
| 6 |
|
rmodislmod.p |
⊢ ⨣ = ( +g ‘ 𝐹 ) |
| 7 |
|
rmodislmod.t |
⊢ × = ( .r ‘ 𝐹 ) |
| 8 |
|
rmodislmod.u |
⊢ 1 = ( 1r ‘ 𝐹 ) |
| 9 |
|
rmodislmod.r |
⊢ ( 𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) ) |
| 10 |
|
rmodislmod.m |
⊢ ∗ = ( 𝑠 ∈ 𝐾 , 𝑣 ∈ 𝑉 ↦ ( 𝑣 · 𝑠 ) ) |
| 11 |
|
rmodislmod.l |
⊢ 𝐿 = ( 𝑅 sSet 〈 ( ·𝑠 ‘ ndx ) , ∗ 〉 ) |
| 12 |
|
baseid |
⊢ Base = Slot ( Base ‘ ndx ) |
| 13 |
|
vscandxnbasendx |
⊢ ( ·𝑠 ‘ ndx ) ≠ ( Base ‘ ndx ) |
| 14 |
13
|
necomi |
⊢ ( Base ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) |
| 15 |
12 14
|
setsnid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( 𝑅 sSet 〈 ( ·𝑠 ‘ ndx ) , ∗ 〉 ) ) |
| 16 |
1 15
|
eqtri |
⊢ 𝑉 = ( Base ‘ ( 𝑅 sSet 〈 ( ·𝑠 ‘ ndx ) , ∗ 〉 ) ) |
| 17 |
11
|
eqcomi |
⊢ ( 𝑅 sSet 〈 ( ·𝑠 ‘ ndx ) , ∗ 〉 ) = 𝐿 |
| 18 |
17
|
fveq2i |
⊢ ( Base ‘ ( 𝑅 sSet 〈 ( ·𝑠 ‘ ndx ) , ∗ 〉 ) ) = ( Base ‘ 𝐿 ) |
| 19 |
16 18
|
eqtri |
⊢ 𝑉 = ( Base ‘ 𝐿 ) |
| 20 |
19
|
a1i |
⊢ ( 𝐹 ∈ CRing → 𝑉 = ( Base ‘ 𝐿 ) ) |
| 21 |
|
plusgid |
⊢ +g = Slot ( +g ‘ ndx ) |
| 22 |
|
vscandxnplusgndx |
⊢ ( ·𝑠 ‘ ndx ) ≠ ( +g ‘ ndx ) |
| 23 |
22
|
necomi |
⊢ ( +g ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) |
| 24 |
21 23
|
setsnid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ ( 𝑅 sSet 〈 ( ·𝑠 ‘ ndx ) , ∗ 〉 ) ) |
| 25 |
11
|
fveq2i |
⊢ ( +g ‘ 𝐿 ) = ( +g ‘ ( 𝑅 sSet 〈 ( ·𝑠 ‘ ndx ) , ∗ 〉 ) ) |
| 26 |
24 2 25
|
3eqtr4i |
⊢ + = ( +g ‘ 𝐿 ) |
| 27 |
26
|
a1i |
⊢ ( 𝐹 ∈ CRing → + = ( +g ‘ 𝐿 ) ) |
| 28 |
|
scaid |
⊢ Scalar = Slot ( Scalar ‘ ndx ) |
| 29 |
|
vscandxnscandx |
⊢ ( ·𝑠 ‘ ndx ) ≠ ( Scalar ‘ ndx ) |
| 30 |
29
|
necomi |
⊢ ( Scalar ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) |
| 31 |
28 30
|
setsnid |
⊢ ( Scalar ‘ 𝑅 ) = ( Scalar ‘ ( 𝑅 sSet 〈 ( ·𝑠 ‘ ndx ) , ∗ 〉 ) ) |
| 32 |
11
|
fveq2i |
⊢ ( Scalar ‘ 𝐿 ) = ( Scalar ‘ ( 𝑅 sSet 〈 ( ·𝑠 ‘ ndx ) , ∗ 〉 ) ) |
| 33 |
31 4 32
|
3eqtr4i |
⊢ 𝐹 = ( Scalar ‘ 𝐿 ) |
| 34 |
33
|
a1i |
⊢ ( 𝐹 ∈ CRing → 𝐹 = ( Scalar ‘ 𝐿 ) ) |
| 35 |
9
|
simp1i |
⊢ 𝑅 ∈ Grp |
| 36 |
5
|
fvexi |
⊢ 𝐾 ∈ V |
| 37 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
| 38 |
10
|
mpoexg |
⊢ ( ( 𝐾 ∈ V ∧ 𝑉 ∈ V ) → ∗ ∈ V ) |
| 39 |
36 37 38
|
mp2an |
⊢ ∗ ∈ V |
| 40 |
|
vscaid |
⊢ ·𝑠 = Slot ( ·𝑠 ‘ ndx ) |
| 41 |
40
|
setsid |
⊢ ( ( 𝑅 ∈ Grp ∧ ∗ ∈ V ) → ∗ = ( ·𝑠 ‘ ( 𝑅 sSet 〈 ( ·𝑠 ‘ ndx ) , ∗ 〉 ) ) ) |
| 42 |
35 39 41
|
mp2an |
⊢ ∗ = ( ·𝑠 ‘ ( 𝑅 sSet 〈 ( ·𝑠 ‘ ndx ) , ∗ 〉 ) ) |
| 43 |
17
|
fveq2i |
⊢ ( ·𝑠 ‘ ( 𝑅 sSet 〈 ( ·𝑠 ‘ ndx ) , ∗ 〉 ) ) = ( ·𝑠 ‘ 𝐿 ) |
| 44 |
42 43
|
eqtri |
⊢ ∗ = ( ·𝑠 ‘ 𝐿 ) |
| 45 |
44
|
a1i |
⊢ ( 𝐹 ∈ CRing → ∗ = ( ·𝑠 ‘ 𝐿 ) ) |
| 46 |
5
|
a1i |
⊢ ( 𝐹 ∈ CRing → 𝐾 = ( Base ‘ 𝐹 ) ) |
| 47 |
6
|
a1i |
⊢ ( 𝐹 ∈ CRing → ⨣ = ( +g ‘ 𝐹 ) ) |
| 48 |
7
|
a1i |
⊢ ( 𝐹 ∈ CRing → × = ( .r ‘ 𝐹 ) ) |
| 49 |
8
|
a1i |
⊢ ( 𝐹 ∈ CRing → 1 = ( 1r ‘ 𝐹 ) ) |
| 50 |
|
crngring |
⊢ ( 𝐹 ∈ CRing → 𝐹 ∈ Ring ) |
| 51 |
1
|
eqcomi |
⊢ ( Base ‘ 𝑅 ) = 𝑉 |
| 52 |
51 19
|
eqtri |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝐿 ) |
| 53 |
24 25
|
eqtr4i |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝐿 ) |
| 54 |
52 53
|
grpprop |
⊢ ( 𝑅 ∈ Grp ↔ 𝐿 ∈ Grp ) |
| 55 |
35 54
|
mpbi |
⊢ 𝐿 ∈ Grp |
| 56 |
55
|
a1i |
⊢ ( 𝐹 ∈ CRing → 𝐿 ∈ Grp ) |
| 57 |
10
|
a1i |
⊢ ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ) → ∗ = ( 𝑠 ∈ 𝐾 , 𝑣 ∈ 𝑉 ↦ ( 𝑣 · 𝑠 ) ) ) |
| 58 |
|
oveq12 |
⊢ ( ( 𝑣 = 𝑏 ∧ 𝑠 = 𝑎 ) → ( 𝑣 · 𝑠 ) = ( 𝑏 · 𝑎 ) ) |
| 59 |
58
|
ancoms |
⊢ ( ( 𝑠 = 𝑎 ∧ 𝑣 = 𝑏 ) → ( 𝑣 · 𝑠 ) = ( 𝑏 · 𝑎 ) ) |
| 60 |
59
|
adantl |
⊢ ( ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑠 = 𝑎 ∧ 𝑣 = 𝑏 ) ) → ( 𝑣 · 𝑠 ) = ( 𝑏 · 𝑎 ) ) |
| 61 |
|
simp2 |
⊢ ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ) → 𝑎 ∈ 𝐾 ) |
| 62 |
|
simp3 |
⊢ ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ) → 𝑏 ∈ 𝑉 ) |
| 63 |
|
ovexd |
⊢ ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ) → ( 𝑏 · 𝑎 ) ∈ V ) |
| 64 |
57 60 61 62 63
|
ovmpod |
⊢ ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ) → ( 𝑎 ∗ 𝑏 ) = ( 𝑏 · 𝑎 ) ) |
| 65 |
|
simpl1 |
⊢ ( ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) → ( 𝑤 · 𝑟 ) ∈ 𝑉 ) |
| 66 |
65
|
2ralimi |
⊢ ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) → ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 𝑟 ) ∈ 𝑉 ) |
| 67 |
66
|
2ralimi |
⊢ ( ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) → ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 𝑟 ) ∈ 𝑉 ) |
| 68 |
|
ringgrp |
⊢ ( 𝐹 ∈ Ring → 𝐹 ∈ Grp ) |
| 69 |
5
|
grpbn0 |
⊢ ( 𝐹 ∈ Grp → 𝐾 ≠ ∅ ) |
| 70 |
68 69
|
syl |
⊢ ( 𝐹 ∈ Ring → 𝐾 ≠ ∅ ) |
| 71 |
70
|
3ad2ant2 |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) ) → 𝐾 ≠ ∅ ) |
| 72 |
9 71
|
ax-mp |
⊢ 𝐾 ≠ ∅ |
| 73 |
|
rspn0 |
⊢ ( 𝐾 ≠ ∅ → ( ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 𝑟 ) ∈ 𝑉 → ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 𝑟 ) ∈ 𝑉 ) ) |
| 74 |
72 73
|
ax-mp |
⊢ ( ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 𝑟 ) ∈ 𝑉 → ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 𝑟 ) ∈ 𝑉 ) |
| 75 |
|
ralcom |
⊢ ( ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 𝑟 ) ∈ 𝑉 ↔ ∀ 𝑥 ∈ 𝑉 ∀ 𝑟 ∈ 𝐾 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 𝑟 ) ∈ 𝑉 ) |
| 76 |
1
|
grpbn0 |
⊢ ( 𝑅 ∈ Grp → 𝑉 ≠ ∅ ) |
| 77 |
76
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) ) → 𝑉 ≠ ∅ ) |
| 78 |
9 77
|
ax-mp |
⊢ 𝑉 ≠ ∅ |
| 79 |
|
rspn0 |
⊢ ( 𝑉 ≠ ∅ → ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑟 ∈ 𝐾 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 𝑟 ) ∈ 𝑉 → ∀ 𝑟 ∈ 𝐾 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 𝑟 ) ∈ 𝑉 ) ) |
| 80 |
78 79
|
ax-mp |
⊢ ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑟 ∈ 𝐾 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 𝑟 ) ∈ 𝑉 → ∀ 𝑟 ∈ 𝐾 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 𝑟 ) ∈ 𝑉 ) |
| 81 |
|
oveq2 |
⊢ ( 𝑟 = 𝑎 → ( 𝑤 · 𝑟 ) = ( 𝑤 · 𝑎 ) ) |
| 82 |
81
|
eleq1d |
⊢ ( 𝑟 = 𝑎 → ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ↔ ( 𝑤 · 𝑎 ) ∈ 𝑉 ) ) |
| 83 |
|
oveq1 |
⊢ ( 𝑤 = 𝑏 → ( 𝑤 · 𝑎 ) = ( 𝑏 · 𝑎 ) ) |
| 84 |
83
|
eleq1d |
⊢ ( 𝑤 = 𝑏 → ( ( 𝑤 · 𝑎 ) ∈ 𝑉 ↔ ( 𝑏 · 𝑎 ) ∈ 𝑉 ) ) |
| 85 |
82 84
|
rspc2v |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ) → ( ∀ 𝑟 ∈ 𝐾 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 𝑟 ) ∈ 𝑉 → ( 𝑏 · 𝑎 ) ∈ 𝑉 ) ) |
| 86 |
85
|
3adant1 |
⊢ ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ) → ( ∀ 𝑟 ∈ 𝐾 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 𝑟 ) ∈ 𝑉 → ( 𝑏 · 𝑎 ) ∈ 𝑉 ) ) |
| 87 |
80 86
|
syl5com |
⊢ ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑟 ∈ 𝐾 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 𝑟 ) ∈ 𝑉 → ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ) → ( 𝑏 · 𝑎 ) ∈ 𝑉 ) ) |
| 88 |
75 87
|
sylbi |
⊢ ( ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 𝑟 ) ∈ 𝑉 → ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ) → ( 𝑏 · 𝑎 ) ∈ 𝑉 ) ) |
| 89 |
67 74 88
|
3syl |
⊢ ( ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) → ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ) → ( 𝑏 · 𝑎 ) ∈ 𝑉 ) ) |
| 90 |
89
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) ) → ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ) → ( 𝑏 · 𝑎 ) ∈ 𝑉 ) ) |
| 91 |
9 90
|
ax-mp |
⊢ ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ) → ( 𝑏 · 𝑎 ) ∈ 𝑉 ) |
| 92 |
64 91
|
eqeltrd |
⊢ ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ) → ( 𝑎 ∗ 𝑏 ) ∈ 𝑉 ) |
| 93 |
10
|
a1i |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ∗ = ( 𝑠 ∈ 𝐾 , 𝑣 ∈ 𝑉 ↦ ( 𝑣 · 𝑠 ) ) ) |
| 94 |
|
oveq12 |
⊢ ( ( 𝑣 = ( 𝑏 + 𝑐 ) ∧ 𝑠 = 𝑎 ) → ( 𝑣 · 𝑠 ) = ( ( 𝑏 + 𝑐 ) · 𝑎 ) ) |
| 95 |
94
|
ancoms |
⊢ ( ( 𝑠 = 𝑎 ∧ 𝑣 = ( 𝑏 + 𝑐 ) ) → ( 𝑣 · 𝑠 ) = ( ( 𝑏 + 𝑐 ) · 𝑎 ) ) |
| 96 |
95
|
adantl |
⊢ ( ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑠 = 𝑎 ∧ 𝑣 = ( 𝑏 + 𝑐 ) ) ) → ( 𝑣 · 𝑠 ) = ( ( 𝑏 + 𝑐 ) · 𝑎 ) ) |
| 97 |
|
simp1 |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → 𝑎 ∈ 𝐾 ) |
| 98 |
1 2
|
grpcl |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑏 + 𝑐 ) ∈ 𝑉 ) |
| 99 |
35 98
|
mp3an1 |
⊢ ( ( 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑏 + 𝑐 ) ∈ 𝑉 ) |
| 100 |
99
|
3adant1 |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑏 + 𝑐 ) ∈ 𝑉 ) |
| 101 |
|
ovexd |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( ( 𝑏 + 𝑐 ) · 𝑎 ) ∈ V ) |
| 102 |
93 96 97 100 101
|
ovmpod |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑎 ∗ ( 𝑏 + 𝑐 ) ) = ( ( 𝑏 + 𝑐 ) · 𝑎 ) ) |
| 103 |
|
simpl2 |
⊢ ( ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) → ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ) |
| 104 |
103
|
2ralimi |
⊢ ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) → ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ) |
| 105 |
104
|
2ralimi |
⊢ ( ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) → ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ) |
| 106 |
|
rspn0 |
⊢ ( 𝐾 ≠ ∅ → ( ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) → ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ) ) |
| 107 |
72 106
|
ax-mp |
⊢ ( ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) → ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ) |
| 108 |
|
oveq2 |
⊢ ( 𝑟 = 𝑎 → ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 + 𝑥 ) · 𝑎 ) ) |
| 109 |
|
oveq2 |
⊢ ( 𝑟 = 𝑎 → ( 𝑥 · 𝑟 ) = ( 𝑥 · 𝑎 ) ) |
| 110 |
81 109
|
oveq12d |
⊢ ( 𝑟 = 𝑎 → ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) = ( ( 𝑤 · 𝑎 ) + ( 𝑥 · 𝑎 ) ) ) |
| 111 |
108 110
|
eqeq12d |
⊢ ( 𝑟 = 𝑎 → ( ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ↔ ( ( 𝑤 + 𝑥 ) · 𝑎 ) = ( ( 𝑤 · 𝑎 ) + ( 𝑥 · 𝑎 ) ) ) ) |
| 112 |
|
oveq2 |
⊢ ( 𝑥 = 𝑐 → ( 𝑤 + 𝑥 ) = ( 𝑤 + 𝑐 ) ) |
| 113 |
112
|
oveq1d |
⊢ ( 𝑥 = 𝑐 → ( ( 𝑤 + 𝑥 ) · 𝑎 ) = ( ( 𝑤 + 𝑐 ) · 𝑎 ) ) |
| 114 |
|
oveq1 |
⊢ ( 𝑥 = 𝑐 → ( 𝑥 · 𝑎 ) = ( 𝑐 · 𝑎 ) ) |
| 115 |
114
|
oveq2d |
⊢ ( 𝑥 = 𝑐 → ( ( 𝑤 · 𝑎 ) + ( 𝑥 · 𝑎 ) ) = ( ( 𝑤 · 𝑎 ) + ( 𝑐 · 𝑎 ) ) ) |
| 116 |
113 115
|
eqeq12d |
⊢ ( 𝑥 = 𝑐 → ( ( ( 𝑤 + 𝑥 ) · 𝑎 ) = ( ( 𝑤 · 𝑎 ) + ( 𝑥 · 𝑎 ) ) ↔ ( ( 𝑤 + 𝑐 ) · 𝑎 ) = ( ( 𝑤 · 𝑎 ) + ( 𝑐 · 𝑎 ) ) ) ) |
| 117 |
|
oveq1 |
⊢ ( 𝑤 = 𝑏 → ( 𝑤 + 𝑐 ) = ( 𝑏 + 𝑐 ) ) |
| 118 |
117
|
oveq1d |
⊢ ( 𝑤 = 𝑏 → ( ( 𝑤 + 𝑐 ) · 𝑎 ) = ( ( 𝑏 + 𝑐 ) · 𝑎 ) ) |
| 119 |
83
|
oveq1d |
⊢ ( 𝑤 = 𝑏 → ( ( 𝑤 · 𝑎 ) + ( 𝑐 · 𝑎 ) ) = ( ( 𝑏 · 𝑎 ) + ( 𝑐 · 𝑎 ) ) ) |
| 120 |
118 119
|
eqeq12d |
⊢ ( 𝑤 = 𝑏 → ( ( ( 𝑤 + 𝑐 ) · 𝑎 ) = ( ( 𝑤 · 𝑎 ) + ( 𝑐 · 𝑎 ) ) ↔ ( ( 𝑏 + 𝑐 ) · 𝑎 ) = ( ( 𝑏 · 𝑎 ) + ( 𝑐 · 𝑎 ) ) ) ) |
| 121 |
111 116 120
|
rspc3v |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) → ( ( 𝑏 + 𝑐 ) · 𝑎 ) = ( ( 𝑏 · 𝑎 ) + ( 𝑐 · 𝑎 ) ) ) ) |
| 122 |
121
|
3com23 |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) → ( ( 𝑏 + 𝑐 ) · 𝑎 ) = ( ( 𝑏 · 𝑎 ) + ( 𝑐 · 𝑎 ) ) ) ) |
| 123 |
107 122
|
syl5com |
⊢ ( ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) → ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( ( 𝑏 + 𝑐 ) · 𝑎 ) = ( ( 𝑏 · 𝑎 ) + ( 𝑐 · 𝑎 ) ) ) ) |
| 124 |
105 123
|
syl |
⊢ ( ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) → ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( ( 𝑏 + 𝑐 ) · 𝑎 ) = ( ( 𝑏 · 𝑎 ) + ( 𝑐 · 𝑎 ) ) ) ) |
| 125 |
124
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) ) → ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( ( 𝑏 + 𝑐 ) · 𝑎 ) = ( ( 𝑏 · 𝑎 ) + ( 𝑐 · 𝑎 ) ) ) ) |
| 126 |
9 125
|
ax-mp |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( ( 𝑏 + 𝑐 ) · 𝑎 ) = ( ( 𝑏 · 𝑎 ) + ( 𝑐 · 𝑎 ) ) ) |
| 127 |
102 126
|
eqtrd |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑎 ∗ ( 𝑏 + 𝑐 ) ) = ( ( 𝑏 · 𝑎 ) + ( 𝑐 · 𝑎 ) ) ) |
| 128 |
127
|
adantl |
⊢ ( ( 𝐹 ∈ CRing ∧ ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) → ( 𝑎 ∗ ( 𝑏 + 𝑐 ) ) = ( ( 𝑏 · 𝑎 ) + ( 𝑐 · 𝑎 ) ) ) |
| 129 |
59
|
adantl |
⊢ ( ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑠 = 𝑎 ∧ 𝑣 = 𝑏 ) ) → ( 𝑣 · 𝑠 ) = ( 𝑏 · 𝑎 ) ) |
| 130 |
|
simp2 |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → 𝑏 ∈ 𝑉 ) |
| 131 |
|
ovexd |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑏 · 𝑎 ) ∈ V ) |
| 132 |
93 129 97 130 131
|
ovmpod |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑎 ∗ 𝑏 ) = ( 𝑏 · 𝑎 ) ) |
| 133 |
|
oveq12 |
⊢ ( ( 𝑣 = 𝑐 ∧ 𝑠 = 𝑎 ) → ( 𝑣 · 𝑠 ) = ( 𝑐 · 𝑎 ) ) |
| 134 |
133
|
ancoms |
⊢ ( ( 𝑠 = 𝑎 ∧ 𝑣 = 𝑐 ) → ( 𝑣 · 𝑠 ) = ( 𝑐 · 𝑎 ) ) |
| 135 |
134
|
adantl |
⊢ ( ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑠 = 𝑎 ∧ 𝑣 = 𝑐 ) ) → ( 𝑣 · 𝑠 ) = ( 𝑐 · 𝑎 ) ) |
| 136 |
|
simp3 |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → 𝑐 ∈ 𝑉 ) |
| 137 |
|
ovexd |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑐 · 𝑎 ) ∈ V ) |
| 138 |
93 135 97 136 137
|
ovmpod |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑎 ∗ 𝑐 ) = ( 𝑐 · 𝑎 ) ) |
| 139 |
132 138
|
oveq12d |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( ( 𝑎 ∗ 𝑏 ) + ( 𝑎 ∗ 𝑐 ) ) = ( ( 𝑏 · 𝑎 ) + ( 𝑐 · 𝑎 ) ) ) |
| 140 |
139
|
adantl |
⊢ ( ( 𝐹 ∈ CRing ∧ ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) → ( ( 𝑎 ∗ 𝑏 ) + ( 𝑎 ∗ 𝑐 ) ) = ( ( 𝑏 · 𝑎 ) + ( 𝑐 · 𝑎 ) ) ) |
| 141 |
128 140
|
eqtr4d |
⊢ ( ( 𝐹 ∈ CRing ∧ ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) ) → ( 𝑎 ∗ ( 𝑏 + 𝑐 ) ) = ( ( 𝑎 ∗ 𝑏 ) + ( 𝑎 ∗ 𝑐 ) ) ) |
| 142 |
|
simpl3 |
⊢ ( ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) → ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) |
| 143 |
142
|
2ralimi |
⊢ ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) → ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) |
| 144 |
143
|
2ralimi |
⊢ ( ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) → ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) |
| 145 |
|
ralrot3 |
⊢ ( ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ↔ ∀ 𝑥 ∈ 𝑉 ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) |
| 146 |
|
rspn0 |
⊢ ( 𝑉 ≠ ∅ → ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) → ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ) |
| 147 |
78 146
|
ax-mp |
⊢ ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) → ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) |
| 148 |
|
oveq1 |
⊢ ( 𝑞 = 𝑎 → ( 𝑞 ⨣ 𝑟 ) = ( 𝑎 ⨣ 𝑟 ) ) |
| 149 |
148
|
oveq2d |
⊢ ( 𝑞 = 𝑎 → ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( 𝑤 · ( 𝑎 ⨣ 𝑟 ) ) ) |
| 150 |
|
oveq2 |
⊢ ( 𝑞 = 𝑎 → ( 𝑤 · 𝑞 ) = ( 𝑤 · 𝑎 ) ) |
| 151 |
150
|
oveq1d |
⊢ ( 𝑞 = 𝑎 → ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) = ( ( 𝑤 · 𝑎 ) + ( 𝑤 · 𝑟 ) ) ) |
| 152 |
149 151
|
eqeq12d |
⊢ ( 𝑞 = 𝑎 → ( ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ↔ ( 𝑤 · ( 𝑎 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑎 ) + ( 𝑤 · 𝑟 ) ) ) ) |
| 153 |
|
oveq2 |
⊢ ( 𝑟 = 𝑏 → ( 𝑎 ⨣ 𝑟 ) = ( 𝑎 ⨣ 𝑏 ) ) |
| 154 |
153
|
oveq2d |
⊢ ( 𝑟 = 𝑏 → ( 𝑤 · ( 𝑎 ⨣ 𝑟 ) ) = ( 𝑤 · ( 𝑎 ⨣ 𝑏 ) ) ) |
| 155 |
|
oveq2 |
⊢ ( 𝑟 = 𝑏 → ( 𝑤 · 𝑟 ) = ( 𝑤 · 𝑏 ) ) |
| 156 |
155
|
oveq2d |
⊢ ( 𝑟 = 𝑏 → ( ( 𝑤 · 𝑎 ) + ( 𝑤 · 𝑟 ) ) = ( ( 𝑤 · 𝑎 ) + ( 𝑤 · 𝑏 ) ) ) |
| 157 |
154 156
|
eqeq12d |
⊢ ( 𝑟 = 𝑏 → ( ( 𝑤 · ( 𝑎 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑎 ) + ( 𝑤 · 𝑟 ) ) ↔ ( 𝑤 · ( 𝑎 ⨣ 𝑏 ) ) = ( ( 𝑤 · 𝑎 ) + ( 𝑤 · 𝑏 ) ) ) ) |
| 158 |
|
oveq1 |
⊢ ( 𝑤 = 𝑐 → ( 𝑤 · ( 𝑎 ⨣ 𝑏 ) ) = ( 𝑐 · ( 𝑎 ⨣ 𝑏 ) ) ) |
| 159 |
|
oveq1 |
⊢ ( 𝑤 = 𝑐 → ( 𝑤 · 𝑎 ) = ( 𝑐 · 𝑎 ) ) |
| 160 |
|
oveq1 |
⊢ ( 𝑤 = 𝑐 → ( 𝑤 · 𝑏 ) = ( 𝑐 · 𝑏 ) ) |
| 161 |
159 160
|
oveq12d |
⊢ ( 𝑤 = 𝑐 → ( ( 𝑤 · 𝑎 ) + ( 𝑤 · 𝑏 ) ) = ( ( 𝑐 · 𝑎 ) + ( 𝑐 · 𝑏 ) ) ) |
| 162 |
158 161
|
eqeq12d |
⊢ ( 𝑤 = 𝑐 → ( ( 𝑤 · ( 𝑎 ⨣ 𝑏 ) ) = ( ( 𝑤 · 𝑎 ) + ( 𝑤 · 𝑏 ) ) ↔ ( 𝑐 · ( 𝑎 ⨣ 𝑏 ) ) = ( ( 𝑐 · 𝑎 ) + ( 𝑐 · 𝑏 ) ) ) ) |
| 163 |
152 157 162
|
rspc3v |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) → ( ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) → ( 𝑐 · ( 𝑎 ⨣ 𝑏 ) ) = ( ( 𝑐 · 𝑎 ) + ( 𝑐 · 𝑏 ) ) ) ) |
| 164 |
147 163
|
syl5com |
⊢ ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) → ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑐 · ( 𝑎 ⨣ 𝑏 ) ) = ( ( 𝑐 · 𝑎 ) + ( 𝑐 · 𝑏 ) ) ) ) |
| 165 |
145 164
|
sylbi |
⊢ ( ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) → ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑐 · ( 𝑎 ⨣ 𝑏 ) ) = ( ( 𝑐 · 𝑎 ) + ( 𝑐 · 𝑏 ) ) ) ) |
| 166 |
144 165
|
syl |
⊢ ( ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) → ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑐 · ( 𝑎 ⨣ 𝑏 ) ) = ( ( 𝑐 · 𝑎 ) + ( 𝑐 · 𝑏 ) ) ) ) |
| 167 |
166
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) ) → ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑐 · ( 𝑎 ⨣ 𝑏 ) ) = ( ( 𝑐 · 𝑎 ) + ( 𝑐 · 𝑏 ) ) ) ) |
| 168 |
9 167
|
ax-mp |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑐 · ( 𝑎 ⨣ 𝑏 ) ) = ( ( 𝑐 · 𝑎 ) + ( 𝑐 · 𝑏 ) ) ) |
| 169 |
10
|
a1i |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) → ∗ = ( 𝑠 ∈ 𝐾 , 𝑣 ∈ 𝑉 ↦ ( 𝑣 · 𝑠 ) ) ) |
| 170 |
|
oveq12 |
⊢ ( ( 𝑣 = 𝑐 ∧ 𝑠 = ( 𝑎 ⨣ 𝑏 ) ) → ( 𝑣 · 𝑠 ) = ( 𝑐 · ( 𝑎 ⨣ 𝑏 ) ) ) |
| 171 |
170
|
ancoms |
⊢ ( ( 𝑠 = ( 𝑎 ⨣ 𝑏 ) ∧ 𝑣 = 𝑐 ) → ( 𝑣 · 𝑠 ) = ( 𝑐 · ( 𝑎 ⨣ 𝑏 ) ) ) |
| 172 |
171
|
adantl |
⊢ ( ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑠 = ( 𝑎 ⨣ 𝑏 ) ∧ 𝑣 = 𝑐 ) ) → ( 𝑣 · 𝑠 ) = ( 𝑐 · ( 𝑎 ⨣ 𝑏 ) ) ) |
| 173 |
5 6
|
grpcl |
⊢ ( ( 𝐹 ∈ Grp ∧ 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ) → ( 𝑎 ⨣ 𝑏 ) ∈ 𝐾 ) |
| 174 |
173
|
3expib |
⊢ ( 𝐹 ∈ Grp → ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ) → ( 𝑎 ⨣ 𝑏 ) ∈ 𝐾 ) ) |
| 175 |
68 174
|
syl |
⊢ ( 𝐹 ∈ Ring → ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ) → ( 𝑎 ⨣ 𝑏 ) ∈ 𝐾 ) ) |
| 176 |
175
|
3ad2ant2 |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) ) → ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ) → ( 𝑎 ⨣ 𝑏 ) ∈ 𝐾 ) ) |
| 177 |
9 176
|
ax-mp |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ) → ( 𝑎 ⨣ 𝑏 ) ∈ 𝐾 ) |
| 178 |
177
|
3adant3 |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑎 ⨣ 𝑏 ) ∈ 𝐾 ) |
| 179 |
|
simp3 |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) → 𝑐 ∈ 𝑉 ) |
| 180 |
|
ovexd |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑐 · ( 𝑎 ⨣ 𝑏 ) ) ∈ V ) |
| 181 |
169 172 178 179 180
|
ovmpod |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) → ( ( 𝑎 ⨣ 𝑏 ) ∗ 𝑐 ) = ( 𝑐 · ( 𝑎 ⨣ 𝑏 ) ) ) |
| 182 |
134
|
adantl |
⊢ ( ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑠 = 𝑎 ∧ 𝑣 = 𝑐 ) ) → ( 𝑣 · 𝑠 ) = ( 𝑐 · 𝑎 ) ) |
| 183 |
|
simp1 |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) → 𝑎 ∈ 𝐾 ) |
| 184 |
|
ovexd |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑐 · 𝑎 ) ∈ V ) |
| 185 |
169 182 183 179 184
|
ovmpod |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑎 ∗ 𝑐 ) = ( 𝑐 · 𝑎 ) ) |
| 186 |
|
oveq12 |
⊢ ( ( 𝑣 = 𝑐 ∧ 𝑠 = 𝑏 ) → ( 𝑣 · 𝑠 ) = ( 𝑐 · 𝑏 ) ) |
| 187 |
186
|
ancoms |
⊢ ( ( 𝑠 = 𝑏 ∧ 𝑣 = 𝑐 ) → ( 𝑣 · 𝑠 ) = ( 𝑐 · 𝑏 ) ) |
| 188 |
187
|
adantl |
⊢ ( ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) ∧ ( 𝑠 = 𝑏 ∧ 𝑣 = 𝑐 ) ) → ( 𝑣 · 𝑠 ) = ( 𝑐 · 𝑏 ) ) |
| 189 |
|
simp2 |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) → 𝑏 ∈ 𝐾 ) |
| 190 |
|
ovexd |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑐 · 𝑏 ) ∈ V ) |
| 191 |
169 188 189 179 190
|
ovmpod |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) → ( 𝑏 ∗ 𝑐 ) = ( 𝑐 · 𝑏 ) ) |
| 192 |
185 191
|
oveq12d |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) → ( ( 𝑎 ∗ 𝑐 ) + ( 𝑏 ∗ 𝑐 ) ) = ( ( 𝑐 · 𝑎 ) + ( 𝑐 · 𝑏 ) ) ) |
| 193 |
168 181 192
|
3eqtr4d |
⊢ ( ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) → ( ( 𝑎 ⨣ 𝑏 ) ∗ 𝑐 ) = ( ( 𝑎 ∗ 𝑐 ) + ( 𝑏 ∗ 𝑐 ) ) ) |
| 194 |
193
|
adantl |
⊢ ( ( 𝐹 ∈ CRing ∧ ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) ) → ( ( 𝑎 ⨣ 𝑏 ) ∗ 𝑐 ) = ( ( 𝑎 ∗ 𝑐 ) + ( 𝑏 ∗ 𝑐 ) ) ) |
| 195 |
1 2 3 4 5 6 7 8 9 10 11
|
rmodislmodlem |
⊢ ( ( 𝐹 ∈ CRing ∧ ( 𝑎 ∈ 𝐾 ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝑉 ) ) → ( ( 𝑎 × 𝑏 ) ∗ 𝑐 ) = ( 𝑎 ∗ ( 𝑏 ∗ 𝑐 ) ) ) |
| 196 |
10
|
a1i |
⊢ ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝑉 ) → ∗ = ( 𝑠 ∈ 𝐾 , 𝑣 ∈ 𝑉 ↦ ( 𝑣 · 𝑠 ) ) ) |
| 197 |
|
oveq12 |
⊢ ( ( 𝑣 = 𝑎 ∧ 𝑠 = 1 ) → ( 𝑣 · 𝑠 ) = ( 𝑎 · 1 ) ) |
| 198 |
197
|
ancoms |
⊢ ( ( 𝑠 = 1 ∧ 𝑣 = 𝑎 ) → ( 𝑣 · 𝑠 ) = ( 𝑎 · 1 ) ) |
| 199 |
198
|
adantl |
⊢ ( ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝑉 ) ∧ ( 𝑠 = 1 ∧ 𝑣 = 𝑎 ) ) → ( 𝑣 · 𝑠 ) = ( 𝑎 · 1 ) ) |
| 200 |
5 8
|
ringidcl |
⊢ ( 𝐹 ∈ Ring → 1 ∈ 𝐾 ) |
| 201 |
50 200
|
syl |
⊢ ( 𝐹 ∈ CRing → 1 ∈ 𝐾 ) |
| 202 |
201
|
adantr |
⊢ ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝑉 ) → 1 ∈ 𝐾 ) |
| 203 |
|
simpr |
⊢ ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝑉 ) → 𝑎 ∈ 𝑉 ) |
| 204 |
|
ovexd |
⊢ ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝑉 ) → ( 𝑎 · 1 ) ∈ V ) |
| 205 |
196 199 202 203 204
|
ovmpod |
⊢ ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝑉 ) → ( 1 ∗ 𝑎 ) = ( 𝑎 · 1 ) ) |
| 206 |
|
simprr |
⊢ ( ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) → ( 𝑤 · 1 ) = 𝑤 ) |
| 207 |
206
|
2ralimi |
⊢ ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) → ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 1 ) = 𝑤 ) |
| 208 |
207
|
2ralimi |
⊢ ( ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) → ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 1 ) = 𝑤 ) |
| 209 |
|
rspn0 |
⊢ ( 𝐾 ≠ ∅ → ( ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 1 ) = 𝑤 → ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 1 ) = 𝑤 ) ) |
| 210 |
72 209
|
ax-mp |
⊢ ( ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 1 ) = 𝑤 → ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 1 ) = 𝑤 ) |
| 211 |
|
rspn0 |
⊢ ( 𝐾 ≠ ∅ → ( ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 1 ) = 𝑤 → ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 1 ) = 𝑤 ) ) |
| 212 |
72 211
|
ax-mp |
⊢ ( ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 1 ) = 𝑤 → ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 1 ) = 𝑤 ) |
| 213 |
|
rspn0 |
⊢ ( 𝑉 ≠ ∅ → ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 1 ) = 𝑤 → ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 1 ) = 𝑤 ) ) |
| 214 |
78 213
|
ax-mp |
⊢ ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 1 ) = 𝑤 → ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 1 ) = 𝑤 ) |
| 215 |
|
oveq1 |
⊢ ( 𝑤 = 𝑎 → ( 𝑤 · 1 ) = ( 𝑎 · 1 ) ) |
| 216 |
|
id |
⊢ ( 𝑤 = 𝑎 → 𝑤 = 𝑎 ) |
| 217 |
215 216
|
eqeq12d |
⊢ ( 𝑤 = 𝑎 → ( ( 𝑤 · 1 ) = 𝑤 ↔ ( 𝑎 · 1 ) = 𝑎 ) ) |
| 218 |
217
|
rspcv |
⊢ ( 𝑎 ∈ 𝑉 → ( ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 1 ) = 𝑤 → ( 𝑎 · 1 ) = 𝑎 ) ) |
| 219 |
218
|
adantl |
⊢ ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝑉 ) → ( ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 1 ) = 𝑤 → ( 𝑎 · 1 ) = 𝑎 ) ) |
| 220 |
214 219
|
syl5com |
⊢ ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( 𝑤 · 1 ) = 𝑤 → ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝑉 ) → ( 𝑎 · 1 ) = 𝑎 ) ) |
| 221 |
208 210 212 220
|
4syl |
⊢ ( ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) → ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝑉 ) → ( 𝑎 · 1 ) = 𝑎 ) ) |
| 222 |
221
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑤 · 𝑟 ) ∈ 𝑉 ∧ ( ( 𝑤 + 𝑥 ) · 𝑟 ) = ( ( 𝑤 · 𝑟 ) + ( 𝑥 · 𝑟 ) ) ∧ ( 𝑤 · ( 𝑞 ⨣ 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) + ( 𝑤 · 𝑟 ) ) ) ∧ ( ( 𝑤 · ( 𝑞 × 𝑟 ) ) = ( ( 𝑤 · 𝑞 ) · 𝑟 ) ∧ ( 𝑤 · 1 ) = 𝑤 ) ) ) → ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝑉 ) → ( 𝑎 · 1 ) = 𝑎 ) ) |
| 223 |
9 222
|
ax-mp |
⊢ ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝑉 ) → ( 𝑎 · 1 ) = 𝑎 ) |
| 224 |
205 223
|
eqtrd |
⊢ ( ( 𝐹 ∈ CRing ∧ 𝑎 ∈ 𝑉 ) → ( 1 ∗ 𝑎 ) = 𝑎 ) |
| 225 |
20 27 34 45 46 47 48 49 50 56 92 141 194 195 224
|
islmodd |
⊢ ( 𝐹 ∈ CRing → 𝐿 ∈ LMod ) |