| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfcleq | ⊢ ( 𝐴  =  𝐵  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐴  ↔  𝑥  ∈  𝐵 ) ) | 
						
							| 2 | 1 | biimpi | ⊢ ( 𝐴  =  𝐵  →  ∀ 𝑥 ( 𝑥  ∈  𝐴  ↔  𝑥  ∈  𝐵 ) ) | 
						
							| 3 |  | anbi1 | ⊢ ( ( 𝑥  ∈  𝐴  ↔  𝑥  ∈  𝐵 )  →  ( ( 𝑥  ∈  𝐴  ∧  𝜑 )  ↔  ( 𝑥  ∈  𝐵  ∧  𝜑 ) ) ) | 
						
							| 4 | 3 | imbi1d | ⊢ ( ( 𝑥  ∈  𝐴  ↔  𝑥  ∈  𝐵 )  →  ( ( ( 𝑥  ∈  𝐴  ∧  𝜑 )  →  𝑥  =  𝑧 )  ↔  ( ( 𝑥  ∈  𝐵  ∧  𝜑 )  →  𝑥  =  𝑧 ) ) ) | 
						
							| 5 | 4 | alimi | ⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝐴  ↔  𝑥  ∈  𝐵 )  →  ∀ 𝑥 ( ( ( 𝑥  ∈  𝐴  ∧  𝜑 )  →  𝑥  =  𝑧 )  ↔  ( ( 𝑥  ∈  𝐵  ∧  𝜑 )  →  𝑥  =  𝑧 ) ) ) | 
						
							| 6 |  | albi | ⊢ ( ∀ 𝑥 ( ( ( 𝑥  ∈  𝐴  ∧  𝜑 )  →  𝑥  =  𝑧 )  ↔  ( ( 𝑥  ∈  𝐵  ∧  𝜑 )  →  𝑥  =  𝑧 ) )  →  ( ∀ 𝑥 ( ( 𝑥  ∈  𝐴  ∧  𝜑 )  →  𝑥  =  𝑧 )  ↔  ∀ 𝑥 ( ( 𝑥  ∈  𝐵  ∧  𝜑 )  →  𝑥  =  𝑧 ) ) ) | 
						
							| 7 | 2 5 6 | 3syl | ⊢ ( 𝐴  =  𝐵  →  ( ∀ 𝑥 ( ( 𝑥  ∈  𝐴  ∧  𝜑 )  →  𝑥  =  𝑧 )  ↔  ∀ 𝑥 ( ( 𝑥  ∈  𝐵  ∧  𝜑 )  →  𝑥  =  𝑧 ) ) ) | 
						
							| 8 | 7 | exbidv | ⊢ ( 𝐴  =  𝐵  →  ( ∃ 𝑧 ∀ 𝑥 ( ( 𝑥  ∈  𝐴  ∧  𝜑 )  →  𝑥  =  𝑧 )  ↔  ∃ 𝑧 ∀ 𝑥 ( ( 𝑥  ∈  𝐵  ∧  𝜑 )  →  𝑥  =  𝑧 ) ) ) | 
						
							| 9 |  | df-mo | ⊢ ( ∃* 𝑥 ( 𝑥  ∈  𝐴  ∧  𝜑 )  ↔  ∃ 𝑧 ∀ 𝑥 ( ( 𝑥  ∈  𝐴  ∧  𝜑 )  →  𝑥  =  𝑧 ) ) | 
						
							| 10 |  | df-mo | ⊢ ( ∃* 𝑥 ( 𝑥  ∈  𝐵  ∧  𝜑 )  ↔  ∃ 𝑧 ∀ 𝑥 ( ( 𝑥  ∈  𝐵  ∧  𝜑 )  →  𝑥  =  𝑧 ) ) | 
						
							| 11 | 8 9 10 | 3bitr4g | ⊢ ( 𝐴  =  𝐵  →  ( ∃* 𝑥 ( 𝑥  ∈  𝐴  ∧  𝜑 )  ↔  ∃* 𝑥 ( 𝑥  ∈  𝐵  ∧  𝜑 ) ) ) | 
						
							| 12 |  | df-rmo | ⊢ ( ∃* 𝑥  ∈  𝐴 𝜑  ↔  ∃* 𝑥 ( 𝑥  ∈  𝐴  ∧  𝜑 ) ) | 
						
							| 13 |  | df-rmo | ⊢ ( ∃* 𝑥  ∈  𝐵 𝜑  ↔  ∃* 𝑥 ( 𝑥  ∈  𝐵  ∧  𝜑 ) ) | 
						
							| 14 | 11 12 13 | 3bitr4g | ⊢ ( 𝐴  =  𝐵  →  ( ∃* 𝑥  ∈  𝐴 𝜑  ↔  ∃* 𝑥  ∈  𝐵 𝜑 ) ) |