Description: Equality deduction for restricted at-most-one quantifier. (Contributed by Alexander van der Vekens, 17-Jun-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | raleqd.1 | ⊢ ( 𝐴 = 𝐵 → ( 𝜑 ↔ 𝜓 ) ) | |
Assertion | rmoeqd | ⊢ ( 𝐴 = 𝐵 → ( ∃* 𝑥 ∈ 𝐴 𝜑 ↔ ∃* 𝑥 ∈ 𝐵 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleqd.1 | ⊢ ( 𝐴 = 𝐵 → ( 𝜑 ↔ 𝜓 ) ) | |
2 | rmoeq1 | ⊢ ( 𝐴 = 𝐵 → ( ∃* 𝑥 ∈ 𝐴 𝜑 ↔ ∃* 𝑥 ∈ 𝐵 𝜑 ) ) | |
3 | 1 | rmobidv | ⊢ ( 𝐴 = 𝐵 → ( ∃* 𝑥 ∈ 𝐵 𝜑 ↔ ∃* 𝑥 ∈ 𝐵 𝜓 ) ) |
4 | 2 3 | bitrd | ⊢ ( 𝐴 = 𝐵 → ( ∃* 𝑥 ∈ 𝐴 𝜑 ↔ ∃* 𝑥 ∈ 𝐵 𝜓 ) ) |