Metamath Proof Explorer


Theorem rmoeqd

Description: Equality deduction for restricted at-most-one quantifier. (Contributed by Alexander van der Vekens, 17-Jun-2017)

Ref Expression
Hypothesis raleqd.1 ( 𝐴 = 𝐵 → ( 𝜑𝜓 ) )
Assertion rmoeqd ( 𝐴 = 𝐵 → ( ∃* 𝑥𝐴 𝜑 ↔ ∃* 𝑥𝐵 𝜓 ) )

Proof

Step Hyp Ref Expression
1 raleqd.1 ( 𝐴 = 𝐵 → ( 𝜑𝜓 ) )
2 rmoeq1 ( 𝐴 = 𝐵 → ( ∃* 𝑥𝐴 𝜑 ↔ ∃* 𝑥𝐵 𝜑 ) )
3 1 rmobidv ( 𝐴 = 𝐵 → ( ∃* 𝑥𝐵 𝜑 ↔ ∃* 𝑥𝐵 𝜓 ) )
4 2 3 bitrd ( 𝐴 = 𝐵 → ( ∃* 𝑥𝐴 𝜑 ↔ ∃* 𝑥𝐵 𝜓 ) )