Metamath Proof Explorer


Theorem rmoi

Description: Consequence of "at most one", using implicit substitution. (Contributed by NM, 4-Nov-2012) (Revised by NM, 16-Jun-2017)

Ref Expression
Hypotheses rmoi.b ( 𝑥 = 𝐵 → ( 𝜑𝜓 ) )
rmoi.c ( 𝑥 = 𝐶 → ( 𝜑𝜒 ) )
Assertion rmoi ( ( ∃* 𝑥𝐴 𝜑 ∧ ( 𝐵𝐴𝜓 ) ∧ ( 𝐶𝐴𝜒 ) ) → 𝐵 = 𝐶 )

Proof

Step Hyp Ref Expression
1 rmoi.b ( 𝑥 = 𝐵 → ( 𝜑𝜓 ) )
2 rmoi.c ( 𝑥 = 𝐶 → ( 𝜑𝜒 ) )
3 1 2 rmob ( ( ∃* 𝑥𝐴 𝜑 ∧ ( 𝐵𝐴𝜓 ) ) → ( 𝐵 = 𝐶 ↔ ( 𝐶𝐴𝜒 ) ) )
4 3 biimp3ar ( ( ∃* 𝑥𝐴 𝜑 ∧ ( 𝐵𝐴𝜓 ) ∧ ( 𝐶𝐴𝜒 ) ) → 𝐵 = 𝐶 )