Metamath Proof Explorer
		
		
		
		Description:  Consequence of "at most one", using implicit substitution.  (Contributed by NM, 4-Nov-2012)  (Revised by NM, 16-Jun-2017)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | rmoi.b | ⊢ ( 𝑥  =  𝐵  →  ( 𝜑  ↔  𝜓 ) ) | 
					
						|  |  | rmoi.c | ⊢ ( 𝑥  =  𝐶  →  ( 𝜑  ↔  𝜒 ) ) | 
				
					|  | Assertion | rmoi | ⊢  ( ( ∃* 𝑥  ∈  𝐴 𝜑  ∧  ( 𝐵  ∈  𝐴  ∧  𝜓 )  ∧  ( 𝐶  ∈  𝐴  ∧  𝜒 ) )  →  𝐵  =  𝐶 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rmoi.b | ⊢ ( 𝑥  =  𝐵  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 2 |  | rmoi.c | ⊢ ( 𝑥  =  𝐶  →  ( 𝜑  ↔  𝜒 ) ) | 
						
							| 3 | 1 2 | rmob | ⊢ ( ( ∃* 𝑥  ∈  𝐴 𝜑  ∧  ( 𝐵  ∈  𝐴  ∧  𝜓 ) )  →  ( 𝐵  =  𝐶  ↔  ( 𝐶  ∈  𝐴  ∧  𝜒 ) ) ) | 
						
							| 4 | 3 | biimp3ar | ⊢ ( ( ∃* 𝑥  ∈  𝐴 𝜑  ∧  ( 𝐵  ∈  𝐴  ∧  𝜓 )  ∧  ( 𝐶  ∈  𝐴  ∧  𝜒 ) )  →  𝐵  =  𝐶 ) |