Metamath Proof Explorer
Description: Consequence of "at most one", using implicit substitution. (Contributed by NM, 4-Nov-2012) (Revised by NM, 16-Jun-2017)
|
|
Ref |
Expression |
|
Hypotheses |
rmoi.b |
⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜓 ) ) |
|
|
rmoi.c |
⊢ ( 𝑥 = 𝐶 → ( 𝜑 ↔ 𝜒 ) ) |
|
Assertion |
rmoi |
⊢ ( ( ∃* 𝑥 ∈ 𝐴 𝜑 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝜓 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝜒 ) ) → 𝐵 = 𝐶 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
rmoi.b |
⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
rmoi.c |
⊢ ( 𝑥 = 𝐶 → ( 𝜑 ↔ 𝜒 ) ) |
3 |
1 2
|
rmob |
⊢ ( ( ∃* 𝑥 ∈ 𝐴 𝜑 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝜓 ) ) → ( 𝐵 = 𝐶 ↔ ( 𝐶 ∈ 𝐴 ∧ 𝜒 ) ) ) |
4 |
3
|
biimp3ar |
⊢ ( ( ∃* 𝑥 ∈ 𝐴 𝜑 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝜓 ) ∧ ( 𝐶 ∈ 𝐴 ∧ 𝜒 ) ) → 𝐵 = 𝐶 ) |