Metamath Proof Explorer
Description: Consequence of "restricted at most one". (Contributed by Thierry
Arnoux, 9-Dec-2019)
|
|
Ref |
Expression |
|
Hypotheses |
rmoi2.1 |
⊢ ( 𝑥 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) |
|
|
rmoi2.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) |
|
|
rmoi2.3 |
⊢ ( 𝜑 → ∃* 𝑥 ∈ 𝐴 𝜓 ) |
|
|
rmoi2.4 |
⊢ ( 𝜑 → 𝑥 ∈ 𝐴 ) |
|
|
rmoi2.5 |
⊢ ( 𝜑 → 𝜓 ) |
|
|
rmoi2.6 |
⊢ ( 𝜑 → 𝜒 ) |
|
Assertion |
rmoi2 |
⊢ ( 𝜑 → 𝑥 = 𝐵 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
rmoi2.1 |
⊢ ( 𝑥 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) |
2 |
|
rmoi2.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) |
3 |
|
rmoi2.3 |
⊢ ( 𝜑 → ∃* 𝑥 ∈ 𝐴 𝜓 ) |
4 |
|
rmoi2.4 |
⊢ ( 𝜑 → 𝑥 ∈ 𝐴 ) |
5 |
|
rmoi2.5 |
⊢ ( 𝜑 → 𝜓 ) |
6 |
|
rmoi2.6 |
⊢ ( 𝜑 → 𝜒 ) |
7 |
1 2 3 4 5
|
rmob2 |
⊢ ( 𝜑 → ( 𝑥 = 𝐵 ↔ 𝜒 ) ) |
8 |
6 7
|
mpbird |
⊢ ( 𝜑 → 𝑥 = 𝐵 ) |