Metamath Proof Explorer


Theorem rmoi2

Description: Consequence of "restricted at most one". (Contributed by Thierry Arnoux, 9-Dec-2019)

Ref Expression
Hypotheses rmoi2.1 ( 𝑥 = 𝐵 → ( 𝜓𝜒 ) )
rmoi2.2 ( 𝜑𝐵𝐴 )
rmoi2.3 ( 𝜑 → ∃* 𝑥𝐴 𝜓 )
rmoi2.4 ( 𝜑𝑥𝐴 )
rmoi2.5 ( 𝜑𝜓 )
rmoi2.6 ( 𝜑𝜒 )
Assertion rmoi2 ( 𝜑𝑥 = 𝐵 )

Proof

Step Hyp Ref Expression
1 rmoi2.1 ( 𝑥 = 𝐵 → ( 𝜓𝜒 ) )
2 rmoi2.2 ( 𝜑𝐵𝐴 )
3 rmoi2.3 ( 𝜑 → ∃* 𝑥𝐴 𝜓 )
4 rmoi2.4 ( 𝜑𝑥𝐴 )
5 rmoi2.5 ( 𝜑𝜓 )
6 rmoi2.6 ( 𝜑𝜒 )
7 1 2 3 4 5 rmob2 ( 𝜑 → ( 𝑥 = 𝐵𝜒 ) )
8 6 7 mpbird ( 𝜑𝑥 = 𝐵 )