| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-ral | ⊢ ( ∀ 𝑥  ∈  𝐴 ( 𝜑  →  𝜓 )  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ( 𝜑  →  𝜓 ) ) ) | 
						
							| 2 |  | imdistan | ⊢ ( ( 𝑥  ∈  𝐴  →  ( 𝜑  →  𝜓 ) )  ↔  ( ( 𝑥  ∈  𝐴  ∧  𝜑 )  →  ( 𝑥  ∈  𝐴  ∧  𝜓 ) ) ) | 
						
							| 3 | 2 | albii | ⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ( 𝜑  →  𝜓 ) )  ↔  ∀ 𝑥 ( ( 𝑥  ∈  𝐴  ∧  𝜑 )  →  ( 𝑥  ∈  𝐴  ∧  𝜓 ) ) ) | 
						
							| 4 | 1 3 | bitri | ⊢ ( ∀ 𝑥  ∈  𝐴 ( 𝜑  →  𝜓 )  ↔  ∀ 𝑥 ( ( 𝑥  ∈  𝐴  ∧  𝜑 )  →  ( 𝑥  ∈  𝐴  ∧  𝜓 ) ) ) | 
						
							| 5 |  | moim | ⊢ ( ∀ 𝑥 ( ( 𝑥  ∈  𝐴  ∧  𝜑 )  →  ( 𝑥  ∈  𝐴  ∧  𝜓 ) )  →  ( ∃* 𝑥 ( 𝑥  ∈  𝐴  ∧  𝜓 )  →  ∃* 𝑥 ( 𝑥  ∈  𝐴  ∧  𝜑 ) ) ) | 
						
							| 6 |  | df-rmo | ⊢ ( ∃* 𝑥  ∈  𝐴 𝜓  ↔  ∃* 𝑥 ( 𝑥  ∈  𝐴  ∧  𝜓 ) ) | 
						
							| 7 |  | df-rmo | ⊢ ( ∃* 𝑥  ∈  𝐴 𝜑  ↔  ∃* 𝑥 ( 𝑥  ∈  𝐴  ∧  𝜑 ) ) | 
						
							| 8 | 5 6 7 | 3imtr4g | ⊢ ( ∀ 𝑥 ( ( 𝑥  ∈  𝐴  ∧  𝜑 )  →  ( 𝑥  ∈  𝐴  ∧  𝜓 ) )  →  ( ∃* 𝑥  ∈  𝐴 𝜓  →  ∃* 𝑥  ∈  𝐴 𝜑 ) ) | 
						
							| 9 | 4 8 | sylbi | ⊢ ( ∀ 𝑥  ∈  𝐴 ( 𝜑  →  𝜓 )  →  ( ∃* 𝑥  ∈  𝐴 𝜓  →  ∃* 𝑥  ∈  𝐴 𝜑 ) ) |