Step |
Hyp |
Ref |
Expression |
1 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝜓 ) ) ) |
2 |
|
imdistan |
⊢ ( ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝜓 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) ) |
3 |
2
|
albii |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝜓 ) ) ↔ ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) ) |
4 |
1 3
|
bitri |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ↔ ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) ) |
5 |
|
moim |
⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) → ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) → ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) |
6 |
|
df-rmo |
⊢ ( ∃* 𝑥 ∈ 𝐴 𝜓 ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) |
7 |
|
df-rmo |
⊢ ( ∃* 𝑥 ∈ 𝐴 𝜑 ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) |
8 |
5 6 7
|
3imtr4g |
⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) → ( ∃* 𝑥 ∈ 𝐴 𝜓 → ∃* 𝑥 ∈ 𝐴 𝜑 ) ) |
9 |
4 8
|
sylbi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) → ( ∃* 𝑥 ∈ 𝐴 𝜓 → ∃* 𝑥 ∈ 𝐴 𝜑 ) ) |