Metamath Proof Explorer


Theorem rmoim

Description: Restricted "at most one" is preserved through implication (note wff reversal). (Contributed by Alexander van der Vekens, 17-Jun-2017)

Ref Expression
Assertion rmoim ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) → ( ∃* 𝑥𝐴 𝜓 → ∃* 𝑥𝐴 𝜑 ) )

Proof

Step Hyp Ref Expression
1 df-ral ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) ↔ ∀ 𝑥 ( 𝑥𝐴 → ( 𝜑𝜓 ) ) )
2 imdistan ( ( 𝑥𝐴 → ( 𝜑𝜓 ) ) ↔ ( ( 𝑥𝐴𝜑 ) → ( 𝑥𝐴𝜓 ) ) )
3 2 albii ( ∀ 𝑥 ( 𝑥𝐴 → ( 𝜑𝜓 ) ) ↔ ∀ 𝑥 ( ( 𝑥𝐴𝜑 ) → ( 𝑥𝐴𝜓 ) ) )
4 1 3 bitri ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) ↔ ∀ 𝑥 ( ( 𝑥𝐴𝜑 ) → ( 𝑥𝐴𝜓 ) ) )
5 moim ( ∀ 𝑥 ( ( 𝑥𝐴𝜑 ) → ( 𝑥𝐴𝜓 ) ) → ( ∃* 𝑥 ( 𝑥𝐴𝜓 ) → ∃* 𝑥 ( 𝑥𝐴𝜑 ) ) )
6 df-rmo ( ∃* 𝑥𝐴 𝜓 ↔ ∃* 𝑥 ( 𝑥𝐴𝜓 ) )
7 df-rmo ( ∃* 𝑥𝐴 𝜑 ↔ ∃* 𝑥 ( 𝑥𝐴𝜑 ) )
8 5 6 7 3imtr4g ( ∀ 𝑥 ( ( 𝑥𝐴𝜑 ) → ( 𝑥𝐴𝜓 ) ) → ( ∃* 𝑥𝐴 𝜓 → ∃* 𝑥𝐴 𝜑 ) )
9 4 8 sylbi ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) → ( ∃* 𝑥𝐴 𝜓 → ∃* 𝑥𝐴 𝜑 ) )