Metamath Proof Explorer


Theorem rmoimi

Description: Restricted "at most one" is preserved through implication (note wff reversal). (Contributed by Alexander van der Vekens, 17-Jun-2017)

Ref Expression
Hypothesis rmoimi.1 ( 𝜑𝜓 )
Assertion rmoimi ( ∃* 𝑥𝐴 𝜓 → ∃* 𝑥𝐴 𝜑 )

Proof

Step Hyp Ref Expression
1 rmoimi.1 ( 𝜑𝜓 )
2 1 a1i ( 𝑥𝐴 → ( 𝜑𝜓 ) )
3 2 rmoimia ( ∃* 𝑥𝐴 𝜓 → ∃* 𝑥𝐴 𝜑 )