Description: Restricted "at most one" is preserved through implication (note wff reversal). (Contributed by Alexander van der Vekens, 17-Jun-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rmoimi2.1 | ⊢ ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) | |
Assertion | rmoimi2 | ⊢ ( ∃* 𝑥 ∈ 𝐵 𝜓 → ∃* 𝑥 ∈ 𝐴 𝜑 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rmoimi2.1 | ⊢ ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) | |
2 | moim | ⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) → ( ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) → ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) | |
3 | 1 2 | ax-mp | ⊢ ( ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) → ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) |
4 | df-rmo | ⊢ ( ∃* 𝑥 ∈ 𝐵 𝜓 ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) | |
5 | df-rmo | ⊢ ( ∃* 𝑥 ∈ 𝐴 𝜑 ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
6 | 3 4 5 | 3imtr4i | ⊢ ( ∃* 𝑥 ∈ 𝐵 𝜓 → ∃* 𝑥 ∈ 𝐴 𝜑 ) |