Metamath Proof Explorer


Theorem rmoimi2

Description: Restricted "at most one" is preserved through implication (note wff reversal). (Contributed by Alexander van der Vekens, 17-Jun-2017)

Ref Expression
Hypothesis rmoimi2.1 𝑥 ( ( 𝑥𝐴𝜑 ) → ( 𝑥𝐵𝜓 ) )
Assertion rmoimi2 ( ∃* 𝑥𝐵 𝜓 → ∃* 𝑥𝐴 𝜑 )

Proof

Step Hyp Ref Expression
1 rmoimi2.1 𝑥 ( ( 𝑥𝐴𝜑 ) → ( 𝑥𝐵𝜓 ) )
2 moim ( ∀ 𝑥 ( ( 𝑥𝐴𝜑 ) → ( 𝑥𝐵𝜓 ) ) → ( ∃* 𝑥 ( 𝑥𝐵𝜓 ) → ∃* 𝑥 ( 𝑥𝐴𝜑 ) ) )
3 1 2 ax-mp ( ∃* 𝑥 ( 𝑥𝐵𝜓 ) → ∃* 𝑥 ( 𝑥𝐴𝜑 ) )
4 df-rmo ( ∃* 𝑥𝐵 𝜓 ↔ ∃* 𝑥 ( 𝑥𝐵𝜓 ) )
5 df-rmo ( ∃* 𝑥𝐴 𝜑 ↔ ∃* 𝑥 ( 𝑥𝐴𝜑 ) )
6 3 4 5 3imtr4i ( ∃* 𝑥𝐵 𝜓 → ∃* 𝑥𝐴 𝜑 )