Metamath Proof Explorer
Description: Restricted "at most one" is preserved through implication (note wff
reversal). (Contributed by Alexander van der Vekens, 17-Jun-2017)
|
|
Ref |
Expression |
|
Hypothesis |
rmoimia.1 |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝜓 ) ) |
|
Assertion |
rmoimia |
⊢ ( ∃* 𝑥 ∈ 𝐴 𝜓 → ∃* 𝑥 ∈ 𝐴 𝜑 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
rmoimia.1 |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝜓 ) ) |
2 |
|
rmoim |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) → ( ∃* 𝑥 ∈ 𝐴 𝜓 → ∃* 𝑥 ∈ 𝐴 𝜑 ) ) |
3 |
2 1
|
mprg |
⊢ ( ∃* 𝑥 ∈ 𝐴 𝜓 → ∃* 𝑥 ∈ 𝐴 𝜑 ) |