Metamath Proof Explorer
		
		
		
		Description:  Restricted "at most one" is preserved through implication (note wff
       reversal).  (Contributed by Alexander van der Vekens, 17-Jun-2017)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypothesis | rmoimia.1 | ⊢ ( 𝑥  ∈  𝐴  →  ( 𝜑  →  𝜓 ) ) | 
				
					|  | Assertion | rmoimia | ⊢  ( ∃* 𝑥  ∈  𝐴 𝜓  →  ∃* 𝑥  ∈  𝐴 𝜑 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rmoimia.1 | ⊢ ( 𝑥  ∈  𝐴  →  ( 𝜑  →  𝜓 ) ) | 
						
							| 2 |  | rmoim | ⊢ ( ∀ 𝑥  ∈  𝐴 ( 𝜑  →  𝜓 )  →  ( ∃* 𝑥  ∈  𝐴 𝜓  →  ∃* 𝑥  ∈  𝐴 𝜑 ) ) | 
						
							| 3 | 2 1 | mprg | ⊢ ( ∃* 𝑥  ∈  𝐴 𝜓  →  ∃* 𝑥  ∈  𝐴 𝜑 ) |