Metamath Proof Explorer


Theorem rmoimia

Description: Restricted "at most one" is preserved through implication (note wff reversal). (Contributed by Alexander van der Vekens, 17-Jun-2017)

Ref Expression
Hypothesis rmoimia.1 ( 𝑥𝐴 → ( 𝜑𝜓 ) )
Assertion rmoimia ( ∃* 𝑥𝐴 𝜓 → ∃* 𝑥𝐴 𝜑 )

Proof

Step Hyp Ref Expression
1 rmoimia.1 ( 𝑥𝐴 → ( 𝜑𝜓 ) )
2 rmoim ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) → ( ∃* 𝑥𝐴 𝜓 → ∃* 𝑥𝐴 𝜑 ) )
3 2 1 mprg ( ∃* 𝑥𝐴 𝜓 → ∃* 𝑥𝐴 𝜑 )