Description: Restricted "at most one" existence implies a restricted class abstraction exists. (Contributed by NM, 17-Jun-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | rmorabex | ⊢ ( ∃* 𝑥 ∈ 𝐴 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∈ V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moabex | ⊢ ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ∈ V ) | |
2 | df-rmo | ⊢ ( ∃* 𝑥 ∈ 𝐴 𝜑 ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
3 | df-rab | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } | |
4 | 3 | eleq1i | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∈ V ↔ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ∈ V ) |
5 | 1 2 4 | 3imtr4i | ⊢ ( ∃* 𝑥 ∈ 𝐴 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∈ V ) |