Metamath Proof Explorer


Theorem rmorabex

Description: Restricted "at most one" existence implies a restricted class abstraction exists. (Contributed by NM, 17-Jun-2017)

Ref Expression
Assertion rmorabex ( ∃* 𝑥𝐴 𝜑 → { 𝑥𝐴𝜑 } ∈ V )

Proof

Step Hyp Ref Expression
1 moabex ( ∃* 𝑥 ( 𝑥𝐴𝜑 ) → { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } ∈ V )
2 df-rmo ( ∃* 𝑥𝐴 𝜑 ↔ ∃* 𝑥 ( 𝑥𝐴𝜑 ) )
3 df-rab { 𝑥𝐴𝜑 } = { 𝑥 ∣ ( 𝑥𝐴𝜑 ) }
4 3 eleq1i ( { 𝑥𝐴𝜑 } ∈ V ↔ { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } ∈ V )
5 1 2 4 3imtr4i ( ∃* 𝑥𝐴 𝜑 → { 𝑥𝐴𝜑 } ∈ V )