| Step | Hyp | Ref | Expression | 
						
							| 1 |  | idd | ⊢ ( 𝐴  ∈  V  →  ( [ 𝐴  /  𝑥 ] 𝜑  →  [ 𝐴  /  𝑥 ] 𝜑 ) ) | 
						
							| 2 |  | nfsbc1v | ⊢ Ⅎ 𝑥 [ 𝐴  /  𝑥 ] 𝜑 | 
						
							| 3 |  | sbceq1a | ⊢ ( 𝑥  =  𝐴  →  ( 𝜑  ↔  [ 𝐴  /  𝑥 ] 𝜑 ) ) | 
						
							| 4 | 2 3 | rexsngf | ⊢ ( 𝐴  ∈  V  →  ( ∃ 𝑥  ∈  { 𝐴 } 𝜑  ↔  [ 𝐴  /  𝑥 ] 𝜑 ) ) | 
						
							| 5 | 2 3 | reusngf | ⊢ ( 𝐴  ∈  V  →  ( ∃! 𝑥  ∈  { 𝐴 } 𝜑  ↔  [ 𝐴  /  𝑥 ] 𝜑 ) ) | 
						
							| 6 | 1 4 5 | 3imtr4d | ⊢ ( 𝐴  ∈  V  →  ( ∃ 𝑥  ∈  { 𝐴 } 𝜑  →  ∃! 𝑥  ∈  { 𝐴 } 𝜑 ) ) | 
						
							| 7 |  | rmo5 | ⊢ ( ∃* 𝑥  ∈  { 𝐴 } 𝜑  ↔  ( ∃ 𝑥  ∈  { 𝐴 } 𝜑  →  ∃! 𝑥  ∈  { 𝐴 } 𝜑 ) ) | 
						
							| 8 | 6 7 | sylibr | ⊢ ( 𝐴  ∈  V  →  ∃* 𝑥  ∈  { 𝐴 } 𝜑 ) | 
						
							| 9 |  | rmo0 | ⊢ ∃* 𝑥  ∈  ∅ 𝜑 | 
						
							| 10 |  | snprc | ⊢ ( ¬  𝐴  ∈  V  ↔  { 𝐴 }  =  ∅ ) | 
						
							| 11 |  | rmoeq1 | ⊢ ( { 𝐴 }  =  ∅  →  ( ∃* 𝑥  ∈  { 𝐴 } 𝜑  ↔  ∃* 𝑥  ∈  ∅ 𝜑 ) ) | 
						
							| 12 | 10 11 | sylbi | ⊢ ( ¬  𝐴  ∈  V  →  ( ∃* 𝑥  ∈  { 𝐴 } 𝜑  ↔  ∃* 𝑥  ∈  ∅ 𝜑 ) ) | 
						
							| 13 | 9 12 | mpbiri | ⊢ ( ¬  𝐴  ∈  V  →  ∃* 𝑥  ∈  { 𝐴 } 𝜑 ) | 
						
							| 14 | 8 13 | pm2.61i | ⊢ ∃* 𝑥  ∈  { 𝐴 } 𝜑 |