Metamath Proof Explorer


Theorem rmosn

Description: A restricted at-most-one quantifier over a singleton is always true. (Contributed by AV, 3-Apr-2023)

Ref Expression
Assertion rmosn ∃* 𝑥 ∈ { 𝐴 } 𝜑

Proof

Step Hyp Ref Expression
1 idd ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜑 ) )
2 nfsbc1v 𝑥 [ 𝐴 / 𝑥 ] 𝜑
3 sbceq1a ( 𝑥 = 𝐴 → ( 𝜑[ 𝐴 / 𝑥 ] 𝜑 ) )
4 2 3 rexsngf ( 𝐴 ∈ V → ( ∃ 𝑥 ∈ { 𝐴 } 𝜑[ 𝐴 / 𝑥 ] 𝜑 ) )
5 2 3 reusngf ( 𝐴 ∈ V → ( ∃! 𝑥 ∈ { 𝐴 } 𝜑[ 𝐴 / 𝑥 ] 𝜑 ) )
6 1 4 5 3imtr4d ( 𝐴 ∈ V → ( ∃ 𝑥 ∈ { 𝐴 } 𝜑 → ∃! 𝑥 ∈ { 𝐴 } 𝜑 ) )
7 rmo5 ( ∃* 𝑥 ∈ { 𝐴 } 𝜑 ↔ ( ∃ 𝑥 ∈ { 𝐴 } 𝜑 → ∃! 𝑥 ∈ { 𝐴 } 𝜑 ) )
8 6 7 sylibr ( 𝐴 ∈ V → ∃* 𝑥 ∈ { 𝐴 } 𝜑 )
9 rmo0 ∃* 𝑥 ∈ ∅ 𝜑
10 snprc ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ )
11 rmoeq1 ( { 𝐴 } = ∅ → ( ∃* 𝑥 ∈ { 𝐴 } 𝜑 ↔ ∃* 𝑥 ∈ ∅ 𝜑 ) )
12 10 11 sylbi ( ¬ 𝐴 ∈ V → ( ∃* 𝑥 ∈ { 𝐴 } 𝜑 ↔ ∃* 𝑥 ∈ ∅ 𝜑 ) )
13 9 12 mpbiri ( ¬ 𝐴 ∈ V → ∃* 𝑥 ∈ { 𝐴 } 𝜑 )
14 8 13 pm2.61i ∃* 𝑥 ∈ { 𝐴 } 𝜑