Description: Two ways of expressing "at most one" element. (Contributed by Zhi Wang, 19-Sep-2024) (Proof shortened by BJ, 23-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | rmotru | ⊢ ( ∃* 𝑥 𝑥 ∈ 𝐴 ↔ ∃* 𝑥 ∈ 𝐴 ⊤ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru | ⊢ ⊤ | |
2 | 1 | biantru | ⊢ ( 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐴 ∧ ⊤ ) ) |
3 | 2 | mobii | ⊢ ( ∃* 𝑥 𝑥 ∈ 𝐴 ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ ⊤ ) ) |
4 | df-rmo | ⊢ ( ∃* 𝑥 ∈ 𝐴 ⊤ ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ ⊤ ) ) | |
5 | 3 4 | bitr4i | ⊢ ( ∃* 𝑥 𝑥 ∈ 𝐴 ↔ ∃* 𝑥 ∈ 𝐴 ⊤ ) |