Metamath Proof Explorer


Theorem rmotru

Description: Two ways of expressing "at most one" element. (Contributed by Zhi Wang, 19-Sep-2024) (Proof shortened by BJ, 23-Sep-2024)

Ref Expression
Assertion rmotru ( ∃* 𝑥 𝑥𝐴 ↔ ∃* 𝑥𝐴 ⊤ )

Proof

Step Hyp Ref Expression
1 tru
2 1 biantru ( 𝑥𝐴 ↔ ( 𝑥𝐴 ∧ ⊤ ) )
3 2 mobii ( ∃* 𝑥 𝑥𝐴 ↔ ∃* 𝑥 ( 𝑥𝐴 ∧ ⊤ ) )
4 df-rmo ( ∃* 𝑥𝐴 ⊤ ↔ ∃* 𝑥 ( 𝑥𝐴 ∧ ⊤ ) )
5 3 4 bitr4i ( ∃* 𝑥 𝑥𝐴 ↔ ∃* 𝑥𝐴 ⊤ )