| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							rmounid.1 | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ¬  𝜓 )  | 
						
						
							| 2 | 
							
								1
							 | 
							ex | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  𝐵  →  ¬  𝜓 ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							con2d | 
							⊢ ( 𝜑  →  ( 𝜓  →  ¬  𝑥  ∈  𝐵 ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							imp | 
							⊢ ( ( 𝜑  ∧  𝜓 )  →  ¬  𝑥  ∈  𝐵 )  | 
						
						
							| 5 | 
							
								
							 | 
							biorf | 
							⊢ ( ¬  𝑥  ∈  𝐵  →  ( 𝑥  ∈  𝐴  ↔  ( 𝑥  ∈  𝐵  ∨  𝑥  ∈  𝐴 ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							orcom | 
							⊢ ( ( 𝑥  ∈  𝐴  ∨  𝑥  ∈  𝐵 )  ↔  ( 𝑥  ∈  𝐵  ∨  𝑥  ∈  𝐴 ) )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							bitr4di | 
							⊢ ( ¬  𝑥  ∈  𝐵  →  ( 𝑥  ∈  𝐴  ↔  ( 𝑥  ∈  𝐴  ∨  𝑥  ∈  𝐵 ) ) )  | 
						
						
							| 8 | 
							
								4 7
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝑥  ∈  𝐴  ↔  ( 𝑥  ∈  𝐴  ∨  𝑥  ∈  𝐵 ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							elun | 
							⊢ ( 𝑥  ∈  ( 𝐴  ∪  𝐵 )  ↔  ( 𝑥  ∈  𝐴  ∨  𝑥  ∈  𝐵 ) )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							bitr4di | 
							⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝑥  ∈  𝐴  ↔  𝑥  ∈  ( 𝐴  ∪  𝐵 ) ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							pm5.32da | 
							⊢ ( 𝜑  →  ( ( 𝜓  ∧  𝑥  ∈  𝐴 )  ↔  ( 𝜓  ∧  𝑥  ∈  ( 𝐴  ∪  𝐵 ) ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							biancomd | 
							⊢ ( 𝜑  →  ( ( 𝜓  ∧  𝑥  ∈  𝐴 )  ↔  ( 𝑥  ∈  ( 𝐴  ∪  𝐵 )  ∧  𝜓 ) ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							bicomd | 
							⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( 𝐴  ∪  𝐵 )  ∧  𝜓 )  ↔  ( 𝜓  ∧  𝑥  ∈  𝐴 ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							biancomd | 
							⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( 𝐴  ∪  𝐵 )  ∧  𝜓 )  ↔  ( 𝑥  ∈  𝐴  ∧  𝜓 ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							mobidv | 
							⊢ ( 𝜑  →  ( ∃* 𝑥 ( 𝑥  ∈  ( 𝐴  ∪  𝐵 )  ∧  𝜓 )  ↔  ∃* 𝑥 ( 𝑥  ∈  𝐴  ∧  𝜓 ) ) )  | 
						
						
							| 16 | 
							
								
							 | 
							df-rmo | 
							⊢ ( ∃* 𝑥  ∈  ( 𝐴  ∪  𝐵 ) 𝜓  ↔  ∃* 𝑥 ( 𝑥  ∈  ( 𝐴  ∪  𝐵 )  ∧  𝜓 ) )  | 
						
						
							| 17 | 
							
								
							 | 
							df-rmo | 
							⊢ ( ∃* 𝑥  ∈  𝐴 𝜓  ↔  ∃* 𝑥 ( 𝑥  ∈  𝐴  ∧  𝜓 ) )  | 
						
						
							| 18 | 
							
								15 16 17
							 | 
							3bitr4g | 
							⊢ ( 𝜑  →  ( ∃* 𝑥  ∈  ( 𝐴  ∪  𝐵 ) 𝜓  ↔  ∃* 𝑥  ∈  𝐴 𝜓 ) )  |