Metamath Proof Explorer


Theorem rmov

Description: An at-most-one quantifier restricted to the universe is unrestricted. (Contributed by Alexander van der Vekens, 17-Jun-2017)

Ref Expression
Assertion rmov ( ∃* 𝑥 ∈ V 𝜑 ↔ ∃* 𝑥 𝜑 )

Proof

Step Hyp Ref Expression
1 df-rmo ( ∃* 𝑥 ∈ V 𝜑 ↔ ∃* 𝑥 ( 𝑥 ∈ V ∧ 𝜑 ) )
2 vex 𝑥 ∈ V
3 2 biantrur ( 𝜑 ↔ ( 𝑥 ∈ V ∧ 𝜑 ) )
4 3 mobii ( ∃* 𝑥 𝜑 ↔ ∃* 𝑥 ( 𝑥 ∈ V ∧ 𝜑 ) )
5 1 4 bitr4i ( ∃* 𝑥 ∈ V 𝜑 ↔ ∃* 𝑥 𝜑 )