Step |
Hyp |
Ref |
Expression |
1 |
|
eluzelz |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 𝐴 ∈ ℤ ) |
2 |
|
zsqcl |
⊢ ( 𝐴 ∈ ℤ → ( 𝐴 ↑ 2 ) ∈ ℤ ) |
3 |
1 2
|
syl |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 ↑ 2 ) ∈ ℤ ) |
4 |
|
1zzd |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 1 ∈ ℤ ) |
5 |
3 4
|
zsubcld |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝐴 ↑ 2 ) − 1 ) ∈ ℤ ) |
6 |
|
sq1 |
⊢ ( 1 ↑ 2 ) = 1 |
7 |
|
eluz2b2 |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝐴 ∈ ℕ ∧ 1 < 𝐴 ) ) |
8 |
7
|
simprbi |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 1 < 𝐴 ) |
9 |
|
1red |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 1 ∈ ℝ ) |
10 |
|
eluzelre |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 𝐴 ∈ ℝ ) |
11 |
|
0le1 |
⊢ 0 ≤ 1 |
12 |
11
|
a1i |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 0 ≤ 1 ) |
13 |
|
eluzge2nn0 |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 𝐴 ∈ ℕ0 ) |
14 |
13
|
nn0ge0d |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 0 ≤ 𝐴 ) |
15 |
9 10 12 14
|
lt2sqd |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 1 < 𝐴 ↔ ( 1 ↑ 2 ) < ( 𝐴 ↑ 2 ) ) ) |
16 |
8 15
|
mpbid |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 1 ↑ 2 ) < ( 𝐴 ↑ 2 ) ) |
17 |
6 16
|
eqbrtrrid |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 1 < ( 𝐴 ↑ 2 ) ) |
18 |
10
|
resqcld |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 ↑ 2 ) ∈ ℝ ) |
19 |
9 18
|
posdifd |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 1 < ( 𝐴 ↑ 2 ) ↔ 0 < ( ( 𝐴 ↑ 2 ) − 1 ) ) ) |
20 |
17 19
|
mpbid |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 0 < ( ( 𝐴 ↑ 2 ) − 1 ) ) |
21 |
|
elnnz |
⊢ ( ( ( 𝐴 ↑ 2 ) − 1 ) ∈ ℕ ↔ ( ( ( 𝐴 ↑ 2 ) − 1 ) ∈ ℤ ∧ 0 < ( ( 𝐴 ↑ 2 ) − 1 ) ) ) |
22 |
5 20 21
|
sylanbrc |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝐴 ↑ 2 ) − 1 ) ∈ ℕ ) |
23 |
|
rmspecsqrtnq |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ∈ ( ℂ ∖ ℚ ) ) |
24 |
23
|
eldifbd |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ¬ ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ∈ ℚ ) |
25 |
24
|
intnand |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ¬ ( ( ( 𝐴 ↑ 2 ) − 1 ) ∈ ℕ ∧ ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ∈ ℚ ) ) |
26 |
|
df-squarenn |
⊢ ◻NN = { 𝑎 ∈ ℕ ∣ ( √ ‘ 𝑎 ) ∈ ℚ } |
27 |
26
|
eleq2i |
⊢ ( ( ( 𝐴 ↑ 2 ) − 1 ) ∈ ◻NN ↔ ( ( 𝐴 ↑ 2 ) − 1 ) ∈ { 𝑎 ∈ ℕ ∣ ( √ ‘ 𝑎 ) ∈ ℚ } ) |
28 |
|
fveq2 |
⊢ ( 𝑎 = ( ( 𝐴 ↑ 2 ) − 1 ) → ( √ ‘ 𝑎 ) = ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ) |
29 |
28
|
eleq1d |
⊢ ( 𝑎 = ( ( 𝐴 ↑ 2 ) − 1 ) → ( ( √ ‘ 𝑎 ) ∈ ℚ ↔ ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ∈ ℚ ) ) |
30 |
29
|
elrab |
⊢ ( ( ( 𝐴 ↑ 2 ) − 1 ) ∈ { 𝑎 ∈ ℕ ∣ ( √ ‘ 𝑎 ) ∈ ℚ } ↔ ( ( ( 𝐴 ↑ 2 ) − 1 ) ∈ ℕ ∧ ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ∈ ℚ ) ) |
31 |
27 30
|
bitr2i |
⊢ ( ( ( ( 𝐴 ↑ 2 ) − 1 ) ∈ ℕ ∧ ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ∈ ℚ ) ↔ ( ( 𝐴 ↑ 2 ) − 1 ) ∈ ◻NN ) |
32 |
25 31
|
sylnib |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ¬ ( ( 𝐴 ↑ 2 ) − 1 ) ∈ ◻NN ) |
33 |
22 32
|
eldifd |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝐴 ↑ 2 ) − 1 ) ∈ ( ℕ ∖ ◻NN ) ) |