Step |
Hyp |
Ref |
Expression |
1 |
|
eluzelre |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 𝐴 ∈ ℝ ) |
2 |
1
|
resqcld |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 ↑ 2 ) ∈ ℝ ) |
3 |
|
1red |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 1 ∈ ℝ ) |
4 |
2 3
|
resubcld |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝐴 ↑ 2 ) − 1 ) ∈ ℝ ) |
5 |
|
sq1 |
⊢ ( 1 ↑ 2 ) = 1 |
6 |
|
eluz2b1 |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝐴 ∈ ℤ ∧ 1 < 𝐴 ) ) |
7 |
6
|
simprbi |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 1 < 𝐴 ) |
8 |
|
0le1 |
⊢ 0 ≤ 1 |
9 |
8
|
a1i |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 0 ≤ 1 ) |
10 |
|
eluzge2nn0 |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 𝐴 ∈ ℕ0 ) |
11 |
10
|
nn0ge0d |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 0 ≤ 𝐴 ) |
12 |
3 1 9 11
|
lt2sqd |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 1 < 𝐴 ↔ ( 1 ↑ 2 ) < ( 𝐴 ↑ 2 ) ) ) |
13 |
7 12
|
mpbid |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 1 ↑ 2 ) < ( 𝐴 ↑ 2 ) ) |
14 |
5 13
|
eqbrtrrid |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 1 < ( 𝐴 ↑ 2 ) ) |
15 |
3 2
|
posdifd |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 1 < ( 𝐴 ↑ 2 ) ↔ 0 < ( ( 𝐴 ↑ 2 ) − 1 ) ) ) |
16 |
14 15
|
mpbid |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 0 < ( ( 𝐴 ↑ 2 ) − 1 ) ) |
17 |
4 16
|
elrpd |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝐴 ↑ 2 ) − 1 ) ∈ ℝ+ ) |