Step |
Hyp |
Ref |
Expression |
1 |
|
rmulccn.1 |
⊢ 𝐽 = ( topGen ‘ ran (,) ) |
2 |
|
rmulccn.2 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
3 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
4 |
3
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
5 |
4
|
a1i |
⊢ ( 𝜑 → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) |
6 |
5
|
cnmptid |
⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↦ 𝑥 ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
7 |
2
|
recnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
8 |
5 5 7
|
cnmptc |
⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↦ 𝐶 ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
9 |
|
ax-mulf |
⊢ · : ( ℂ × ℂ ) ⟶ ℂ |
10 |
|
ffn |
⊢ ( · : ( ℂ × ℂ ) ⟶ ℂ → · Fn ( ℂ × ℂ ) ) |
11 |
9 10
|
ax-mp |
⊢ · Fn ( ℂ × ℂ ) |
12 |
|
fnov |
⊢ ( · Fn ( ℂ × ℂ ) ↔ · = ( 𝑦 ∈ ℂ , 𝑧 ∈ ℂ ↦ ( 𝑦 · 𝑧 ) ) ) |
13 |
11 12
|
mpbi |
⊢ · = ( 𝑦 ∈ ℂ , 𝑧 ∈ ℂ ↦ ( 𝑦 · 𝑧 ) ) |
14 |
3
|
mulcn |
⊢ · ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
15 |
13 14
|
eqeltrri |
⊢ ( 𝑦 ∈ ℂ , 𝑧 ∈ ℂ ↦ ( 𝑦 · 𝑧 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
16 |
15
|
a1i |
⊢ ( 𝜑 → ( 𝑦 ∈ ℂ , 𝑧 ∈ ℂ ↦ ( 𝑦 · 𝑧 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
17 |
|
oveq12 |
⊢ ( ( 𝑦 = 𝑥 ∧ 𝑧 = 𝐶 ) → ( 𝑦 · 𝑧 ) = ( 𝑥 · 𝐶 ) ) |
18 |
5 6 8 5 5 16 17
|
cnmpt12 |
⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↦ ( 𝑥 · 𝐶 ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
19 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
20 |
4
|
toponunii |
⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) |
21 |
20
|
cnrest |
⊢ ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 · 𝐶 ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ∧ ℝ ⊆ ℂ ) → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 · 𝐶 ) ) ↾ ℝ ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) Cn ( TopOpen ‘ ℂfld ) ) ) |
22 |
18 19 21
|
sylancl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 · 𝐶 ) ) ↾ ℝ ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) Cn ( TopOpen ‘ ℂfld ) ) ) |
23 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝑥 ∈ ℂ ) |
24 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝐶 ∈ ℂ ) |
25 |
23 24
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( 𝑥 · 𝐶 ) ∈ ℂ ) |
26 |
25
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℂ ( 𝑥 · 𝐶 ) ∈ ℂ ) |
27 |
|
eqid |
⊢ ( 𝑥 ∈ ℂ ↦ ( 𝑥 · 𝐶 ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑥 · 𝐶 ) ) |
28 |
27
|
fnmpt |
⊢ ( ∀ 𝑥 ∈ ℂ ( 𝑥 · 𝐶 ) ∈ ℂ → ( 𝑥 ∈ ℂ ↦ ( 𝑥 · 𝐶 ) ) Fn ℂ ) |
29 |
26 28
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↦ ( 𝑥 · 𝐶 ) ) Fn ℂ ) |
30 |
|
fnssres |
⊢ ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 · 𝐶 ) ) Fn ℂ ∧ ℝ ⊆ ℂ ) → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 · 𝐶 ) ) ↾ ℝ ) Fn ℝ ) |
31 |
29 19 30
|
sylancl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 · 𝐶 ) ) ↾ ℝ ) Fn ℝ ) |
32 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) → 𝑤 ∈ ℝ ) |
33 |
|
fvres |
⊢ ( 𝑤 ∈ ℝ → ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 · 𝐶 ) ) ↾ ℝ ) ‘ 𝑤 ) = ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 · 𝐶 ) ) ‘ 𝑤 ) ) |
34 |
|
recn |
⊢ ( 𝑤 ∈ ℝ → 𝑤 ∈ ℂ ) |
35 |
|
oveq1 |
⊢ ( 𝑥 = 𝑤 → ( 𝑥 · 𝐶 ) = ( 𝑤 · 𝐶 ) ) |
36 |
|
ovex |
⊢ ( 𝑤 · 𝐶 ) ∈ V |
37 |
35 27 36
|
fvmpt |
⊢ ( 𝑤 ∈ ℂ → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 · 𝐶 ) ) ‘ 𝑤 ) = ( 𝑤 · 𝐶 ) ) |
38 |
34 37
|
syl |
⊢ ( 𝑤 ∈ ℝ → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 · 𝐶 ) ) ‘ 𝑤 ) = ( 𝑤 · 𝐶 ) ) |
39 |
33 38
|
eqtrd |
⊢ ( 𝑤 ∈ ℝ → ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 · 𝐶 ) ) ↾ ℝ ) ‘ 𝑤 ) = ( 𝑤 · 𝐶 ) ) |
40 |
32 39
|
syl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) → ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 · 𝐶 ) ) ↾ ℝ ) ‘ 𝑤 ) = ( 𝑤 · 𝐶 ) ) |
41 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) → 𝐶 ∈ ℝ ) |
42 |
32 41
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) → ( 𝑤 · 𝐶 ) ∈ ℝ ) |
43 |
40 42
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) → ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 · 𝐶 ) ) ↾ ℝ ) ‘ 𝑤 ) ∈ ℝ ) |
44 |
43
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑤 ∈ ℝ ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 · 𝐶 ) ) ↾ ℝ ) ‘ 𝑤 ) ∈ ℝ ) |
45 |
|
fnfvrnss |
⊢ ( ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 · 𝐶 ) ) ↾ ℝ ) Fn ℝ ∧ ∀ 𝑤 ∈ ℝ ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 · 𝐶 ) ) ↾ ℝ ) ‘ 𝑤 ) ∈ ℝ ) → ran ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 · 𝐶 ) ) ↾ ℝ ) ⊆ ℝ ) |
46 |
31 44 45
|
syl2anc |
⊢ ( 𝜑 → ran ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 · 𝐶 ) ) ↾ ℝ ) ⊆ ℝ ) |
47 |
19
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
48 |
|
cnrest2 |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ran ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 · 𝐶 ) ) ↾ ℝ ) ⊆ ℝ ∧ ℝ ⊆ ℂ ) → ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 · 𝐶 ) ) ↾ ℝ ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 · 𝐶 ) ) ↾ ℝ ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) ) |
49 |
5 46 47 48
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 · 𝐶 ) ) ↾ ℝ ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 · 𝐶 ) ) ↾ ℝ ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) ) |
50 |
22 49
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 · 𝐶 ) ) ↾ ℝ ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) |
51 |
|
resmpt |
⊢ ( ℝ ⊆ ℂ → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 · 𝐶 ) ) ↾ ℝ ) = ( 𝑥 ∈ ℝ ↦ ( 𝑥 · 𝐶 ) ) ) |
52 |
19 51
|
ax-mp |
⊢ ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 · 𝐶 ) ) ↾ ℝ ) = ( 𝑥 ∈ ℝ ↦ ( 𝑥 · 𝐶 ) ) |
53 |
3
|
tgioo2 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
54 |
1 53
|
eqtri |
⊢ 𝐽 = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
55 |
54 54
|
oveq12i |
⊢ ( 𝐽 Cn 𝐽 ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) |
56 |
55
|
eqcomi |
⊢ ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) = ( 𝐽 Cn 𝐽 ) |
57 |
50 52 56
|
3eltr3g |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ ( 𝑥 · 𝐶 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |