Step |
Hyp |
Ref |
Expression |
1 |
|
0z |
⊢ 0 ∈ ℤ |
2 |
|
rmxyval |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 0 ∈ ℤ ) → ( ( 𝐴 Xrm 0 ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 𝐴 Yrm 0 ) ) ) = ( ( 𝐴 + ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ) ↑ 0 ) ) |
3 |
1 2
|
mpan2 |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝐴 Xrm 0 ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 𝐴 Yrm 0 ) ) ) = ( ( 𝐴 + ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ) ↑ 0 ) ) |
4 |
|
rmbaserp |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 + ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ) ∈ ℝ+ ) |
5 |
4
|
rpcnd |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 + ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ) ∈ ℂ ) |
6 |
5
|
exp0d |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝐴 + ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ) ↑ 0 ) = 1 ) |
7 |
|
rmspecpos |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝐴 ↑ 2 ) − 1 ) ∈ ℝ+ ) |
8 |
7
|
rpcnd |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝐴 ↑ 2 ) − 1 ) ∈ ℂ ) |
9 |
8
|
sqrtcld |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ∈ ℂ ) |
10 |
9
|
mul01d |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · 0 ) = 0 ) |
11 |
10
|
oveq2d |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 1 + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · 0 ) ) = ( 1 + 0 ) ) |
12 |
|
1p0e1 |
⊢ ( 1 + 0 ) = 1 |
13 |
11 12
|
eqtr2di |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 1 = ( 1 + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · 0 ) ) ) |
14 |
3 6 13
|
3eqtrd |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝐴 Xrm 0 ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 𝐴 Yrm 0 ) ) ) = ( 1 + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · 0 ) ) ) |
15 |
|
rmspecsqrtnq |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ∈ ( ℂ ∖ ℚ ) ) |
16 |
|
nn0ssq |
⊢ ℕ0 ⊆ ℚ |
17 |
|
frmx |
⊢ Xrm : ( ( ℤ≥ ‘ 2 ) × ℤ ) ⟶ ℕ0 |
18 |
17
|
fovcl |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 0 ∈ ℤ ) → ( 𝐴 Xrm 0 ) ∈ ℕ0 ) |
19 |
1 18
|
mpan2 |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 Xrm 0 ) ∈ ℕ0 ) |
20 |
16 19
|
sselid |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 Xrm 0 ) ∈ ℚ ) |
21 |
|
zssq |
⊢ ℤ ⊆ ℚ |
22 |
|
frmy |
⊢ Yrm : ( ( ℤ≥ ‘ 2 ) × ℤ ) ⟶ ℤ |
23 |
22
|
fovcl |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 0 ∈ ℤ ) → ( 𝐴 Yrm 0 ) ∈ ℤ ) |
24 |
1 23
|
mpan2 |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 Yrm 0 ) ∈ ℤ ) |
25 |
21 24
|
sselid |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 Yrm 0 ) ∈ ℚ ) |
26 |
|
1z |
⊢ 1 ∈ ℤ |
27 |
21 26
|
sselii |
⊢ 1 ∈ ℚ |
28 |
27
|
a1i |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 1 ∈ ℚ ) |
29 |
21 1
|
sselii |
⊢ 0 ∈ ℚ |
30 |
29
|
a1i |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 0 ∈ ℚ ) |
31 |
|
qirropth |
⊢ ( ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ∈ ( ℂ ∖ ℚ ) ∧ ( ( 𝐴 Xrm 0 ) ∈ ℚ ∧ ( 𝐴 Yrm 0 ) ∈ ℚ ) ∧ ( 1 ∈ ℚ ∧ 0 ∈ ℚ ) ) → ( ( ( 𝐴 Xrm 0 ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 𝐴 Yrm 0 ) ) ) = ( 1 + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · 0 ) ) ↔ ( ( 𝐴 Xrm 0 ) = 1 ∧ ( 𝐴 Yrm 0 ) = 0 ) ) ) |
32 |
15 20 25 28 30 31
|
syl122anc |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( ( ( 𝐴 Xrm 0 ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 𝐴 Yrm 0 ) ) ) = ( 1 + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · 0 ) ) ↔ ( ( 𝐴 Xrm 0 ) = 1 ∧ ( 𝐴 Yrm 0 ) = 0 ) ) ) |
33 |
14 32
|
mpbid |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝐴 Xrm 0 ) = 1 ∧ ( 𝐴 Yrm 0 ) = 0 ) ) |