Step |
Hyp |
Ref |
Expression |
1 |
|
1z |
⊢ 1 ∈ ℤ |
2 |
|
rmxyval |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 1 ∈ ℤ ) → ( ( 𝐴 Xrm 1 ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 𝐴 Yrm 1 ) ) ) = ( ( 𝐴 + ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ) ↑ 1 ) ) |
3 |
1 2
|
mpan2 |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝐴 Xrm 1 ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 𝐴 Yrm 1 ) ) ) = ( ( 𝐴 + ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ) ↑ 1 ) ) |
4 |
|
rmbaserp |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 + ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ) ∈ ℝ+ ) |
5 |
4
|
rpcnd |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 + ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ) ∈ ℂ ) |
6 |
5
|
exp1d |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝐴 + ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ) ↑ 1 ) = ( 𝐴 + ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ) ) |
7 |
|
rmspecpos |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝐴 ↑ 2 ) − 1 ) ∈ ℝ+ ) |
8 |
7
|
rpcnd |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝐴 ↑ 2 ) − 1 ) ∈ ℂ ) |
9 |
8
|
sqrtcld |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ∈ ℂ ) |
10 |
9
|
mulid1d |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · 1 ) = ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ) |
11 |
10
|
eqcomd |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) = ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · 1 ) ) |
12 |
11
|
oveq2d |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 + ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ) = ( 𝐴 + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · 1 ) ) ) |
13 |
3 6 12
|
3eqtrd |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝐴 Xrm 1 ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 𝐴 Yrm 1 ) ) ) = ( 𝐴 + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · 1 ) ) ) |
14 |
|
rmspecsqrtnq |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ∈ ( ℂ ∖ ℚ ) ) |
15 |
|
nn0ssq |
⊢ ℕ0 ⊆ ℚ |
16 |
|
frmx |
⊢ Xrm : ( ( ℤ≥ ‘ 2 ) × ℤ ) ⟶ ℕ0 |
17 |
16
|
fovcl |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 1 ∈ ℤ ) → ( 𝐴 Xrm 1 ) ∈ ℕ0 ) |
18 |
1 17
|
mpan2 |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 Xrm 1 ) ∈ ℕ0 ) |
19 |
15 18
|
sselid |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 Xrm 1 ) ∈ ℚ ) |
20 |
|
zssq |
⊢ ℤ ⊆ ℚ |
21 |
|
frmy |
⊢ Yrm : ( ( ℤ≥ ‘ 2 ) × ℤ ) ⟶ ℤ |
22 |
21
|
fovcl |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 1 ∈ ℤ ) → ( 𝐴 Yrm 1 ) ∈ ℤ ) |
23 |
1 22
|
mpan2 |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 Yrm 1 ) ∈ ℤ ) |
24 |
20 23
|
sselid |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 Yrm 1 ) ∈ ℚ ) |
25 |
|
eluzelz |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 𝐴 ∈ ℤ ) |
26 |
|
zq |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℚ ) |
27 |
25 26
|
syl |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 𝐴 ∈ ℚ ) |
28 |
20 1
|
sselii |
⊢ 1 ∈ ℚ |
29 |
28
|
a1i |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 1 ∈ ℚ ) |
30 |
|
qirropth |
⊢ ( ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ∈ ( ℂ ∖ ℚ ) ∧ ( ( 𝐴 Xrm 1 ) ∈ ℚ ∧ ( 𝐴 Yrm 1 ) ∈ ℚ ) ∧ ( 𝐴 ∈ ℚ ∧ 1 ∈ ℚ ) ) → ( ( ( 𝐴 Xrm 1 ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 𝐴 Yrm 1 ) ) ) = ( 𝐴 + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · 1 ) ) ↔ ( ( 𝐴 Xrm 1 ) = 𝐴 ∧ ( 𝐴 Yrm 1 ) = 1 ) ) ) |
31 |
14 19 24 27 29 30
|
syl122anc |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( ( ( 𝐴 Xrm 1 ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 𝐴 Yrm 1 ) ) ) = ( 𝐴 + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · 1 ) ) ↔ ( ( 𝐴 Xrm 1 ) = 𝐴 ∧ ( 𝐴 Yrm 1 ) = 1 ) ) ) |
32 |
13 31
|
mpbid |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝐴 Xrm 1 ) = 𝐴 ∧ ( 𝐴 Yrm 1 ) = 1 ) ) |