Step |
Hyp |
Ref |
Expression |
1 |
|
rmxfval |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℤ ) → ( 𝐴 Xrm 𝑁 ) = ( 1st ‘ ( ◡ ( 𝑏 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st ‘ 𝑏 ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 2nd ‘ 𝑏 ) ) ) ) ‘ ( ( 𝐴 + ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ) ↑ 𝑁 ) ) ) ) |
2 |
|
rmyfval |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℤ ) → ( 𝐴 Yrm 𝑁 ) = ( 2nd ‘ ( ◡ ( 𝑏 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st ‘ 𝑏 ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 2nd ‘ 𝑏 ) ) ) ) ‘ ( ( 𝐴 + ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ) ↑ 𝑁 ) ) ) ) |
3 |
2
|
oveq2d |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℤ ) → ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 𝐴 Yrm 𝑁 ) ) = ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 2nd ‘ ( ◡ ( 𝑏 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st ‘ 𝑏 ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 2nd ‘ 𝑏 ) ) ) ) ‘ ( ( 𝐴 + ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ) ↑ 𝑁 ) ) ) ) ) |
4 |
1 3
|
oveq12d |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℤ ) → ( ( 𝐴 Xrm 𝑁 ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 𝐴 Yrm 𝑁 ) ) ) = ( ( 1st ‘ ( ◡ ( 𝑏 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st ‘ 𝑏 ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 2nd ‘ 𝑏 ) ) ) ) ‘ ( ( 𝐴 + ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ) ↑ 𝑁 ) ) ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 2nd ‘ ( ◡ ( 𝑏 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st ‘ 𝑏 ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 2nd ‘ 𝑏 ) ) ) ) ‘ ( ( 𝐴 + ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ) ↑ 𝑁 ) ) ) ) ) ) |
5 |
|
rmxyelxp |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℤ ) → ( ◡ ( 𝑏 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st ‘ 𝑏 ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 2nd ‘ 𝑏 ) ) ) ) ‘ ( ( 𝐴 + ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ) ↑ 𝑁 ) ) ∈ ( ℕ0 × ℤ ) ) |
6 |
|
fveq2 |
⊢ ( 𝑎 = ( ◡ ( 𝑏 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st ‘ 𝑏 ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 2nd ‘ 𝑏 ) ) ) ) ‘ ( ( 𝐴 + ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ) ↑ 𝑁 ) ) → ( 1st ‘ 𝑎 ) = ( 1st ‘ ( ◡ ( 𝑏 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st ‘ 𝑏 ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 2nd ‘ 𝑏 ) ) ) ) ‘ ( ( 𝐴 + ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ) ↑ 𝑁 ) ) ) ) |
7 |
|
fveq2 |
⊢ ( 𝑎 = ( ◡ ( 𝑏 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st ‘ 𝑏 ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 2nd ‘ 𝑏 ) ) ) ) ‘ ( ( 𝐴 + ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ) ↑ 𝑁 ) ) → ( 2nd ‘ 𝑎 ) = ( 2nd ‘ ( ◡ ( 𝑏 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st ‘ 𝑏 ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 2nd ‘ 𝑏 ) ) ) ) ‘ ( ( 𝐴 + ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ) ↑ 𝑁 ) ) ) ) |
8 |
7
|
oveq2d |
⊢ ( 𝑎 = ( ◡ ( 𝑏 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st ‘ 𝑏 ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 2nd ‘ 𝑏 ) ) ) ) ‘ ( ( 𝐴 + ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ) ↑ 𝑁 ) ) → ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 2nd ‘ 𝑎 ) ) = ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 2nd ‘ ( ◡ ( 𝑏 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st ‘ 𝑏 ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 2nd ‘ 𝑏 ) ) ) ) ‘ ( ( 𝐴 + ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ) ↑ 𝑁 ) ) ) ) ) |
9 |
6 8
|
oveq12d |
⊢ ( 𝑎 = ( ◡ ( 𝑏 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st ‘ 𝑏 ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 2nd ‘ 𝑏 ) ) ) ) ‘ ( ( 𝐴 + ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ) ↑ 𝑁 ) ) → ( ( 1st ‘ 𝑎 ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 2nd ‘ 𝑎 ) ) ) = ( ( 1st ‘ ( ◡ ( 𝑏 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st ‘ 𝑏 ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 2nd ‘ 𝑏 ) ) ) ) ‘ ( ( 𝐴 + ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ) ↑ 𝑁 ) ) ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 2nd ‘ ( ◡ ( 𝑏 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st ‘ 𝑏 ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 2nd ‘ 𝑏 ) ) ) ) ‘ ( ( 𝐴 + ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ) ↑ 𝑁 ) ) ) ) ) ) |
10 |
|
fveq2 |
⊢ ( 𝑏 = 𝑎 → ( 1st ‘ 𝑏 ) = ( 1st ‘ 𝑎 ) ) |
11 |
|
fveq2 |
⊢ ( 𝑏 = 𝑎 → ( 2nd ‘ 𝑏 ) = ( 2nd ‘ 𝑎 ) ) |
12 |
11
|
oveq2d |
⊢ ( 𝑏 = 𝑎 → ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 2nd ‘ 𝑏 ) ) = ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 2nd ‘ 𝑎 ) ) ) |
13 |
10 12
|
oveq12d |
⊢ ( 𝑏 = 𝑎 → ( ( 1st ‘ 𝑏 ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 2nd ‘ 𝑏 ) ) ) = ( ( 1st ‘ 𝑎 ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 2nd ‘ 𝑎 ) ) ) ) |
14 |
13
|
cbvmptv |
⊢ ( 𝑏 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st ‘ 𝑏 ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 2nd ‘ 𝑏 ) ) ) ) = ( 𝑎 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st ‘ 𝑎 ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 2nd ‘ 𝑎 ) ) ) ) |
15 |
|
ovex |
⊢ ( ( 1st ‘ ( ◡ ( 𝑏 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st ‘ 𝑏 ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 2nd ‘ 𝑏 ) ) ) ) ‘ ( ( 𝐴 + ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ) ↑ 𝑁 ) ) ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 2nd ‘ ( ◡ ( 𝑏 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st ‘ 𝑏 ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 2nd ‘ 𝑏 ) ) ) ) ‘ ( ( 𝐴 + ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ) ↑ 𝑁 ) ) ) ) ) ∈ V |
16 |
9 14 15
|
fvmpt |
⊢ ( ( ◡ ( 𝑏 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st ‘ 𝑏 ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 2nd ‘ 𝑏 ) ) ) ) ‘ ( ( 𝐴 + ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ) ↑ 𝑁 ) ) ∈ ( ℕ0 × ℤ ) → ( ( 𝑏 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st ‘ 𝑏 ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 2nd ‘ 𝑏 ) ) ) ) ‘ ( ◡ ( 𝑏 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st ‘ 𝑏 ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 2nd ‘ 𝑏 ) ) ) ) ‘ ( ( 𝐴 + ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ) ↑ 𝑁 ) ) ) = ( ( 1st ‘ ( ◡ ( 𝑏 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st ‘ 𝑏 ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 2nd ‘ 𝑏 ) ) ) ) ‘ ( ( 𝐴 + ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ) ↑ 𝑁 ) ) ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 2nd ‘ ( ◡ ( 𝑏 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st ‘ 𝑏 ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 2nd ‘ 𝑏 ) ) ) ) ‘ ( ( 𝐴 + ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ) ↑ 𝑁 ) ) ) ) ) ) |
17 |
5 16
|
syl |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℤ ) → ( ( 𝑏 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st ‘ 𝑏 ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 2nd ‘ 𝑏 ) ) ) ) ‘ ( ◡ ( 𝑏 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st ‘ 𝑏 ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 2nd ‘ 𝑏 ) ) ) ) ‘ ( ( 𝐴 + ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ) ↑ 𝑁 ) ) ) = ( ( 1st ‘ ( ◡ ( 𝑏 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st ‘ 𝑏 ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 2nd ‘ 𝑏 ) ) ) ) ‘ ( ( 𝐴 + ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ) ↑ 𝑁 ) ) ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 2nd ‘ ( ◡ ( 𝑏 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st ‘ 𝑏 ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 2nd ‘ 𝑏 ) ) ) ) ‘ ( ( 𝐴 + ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ) ↑ 𝑁 ) ) ) ) ) ) |
18 |
|
rmxypairf1o |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑏 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st ‘ 𝑏 ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 2nd ‘ 𝑏 ) ) ) ) : ( ℕ0 × ℤ ) –1-1-onto→ { 𝑎 ∣ ∃ 𝑐 ∈ ℕ0 ∃ 𝑑 ∈ ℤ 𝑎 = ( 𝑐 + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · 𝑑 ) ) } ) |
19 |
18
|
adantr |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℤ ) → ( 𝑏 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st ‘ 𝑏 ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 2nd ‘ 𝑏 ) ) ) ) : ( ℕ0 × ℤ ) –1-1-onto→ { 𝑎 ∣ ∃ 𝑐 ∈ ℕ0 ∃ 𝑑 ∈ ℤ 𝑎 = ( 𝑐 + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · 𝑑 ) ) } ) |
20 |
|
rmxyelqirr |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℤ ) → ( ( 𝐴 + ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ) ↑ 𝑁 ) ∈ { 𝑎 ∣ ∃ 𝑐 ∈ ℕ0 ∃ 𝑑 ∈ ℤ 𝑎 = ( 𝑐 + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · 𝑑 ) ) } ) |
21 |
|
f1ocnvfv2 |
⊢ ( ( ( 𝑏 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st ‘ 𝑏 ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 2nd ‘ 𝑏 ) ) ) ) : ( ℕ0 × ℤ ) –1-1-onto→ { 𝑎 ∣ ∃ 𝑐 ∈ ℕ0 ∃ 𝑑 ∈ ℤ 𝑎 = ( 𝑐 + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · 𝑑 ) ) } ∧ ( ( 𝐴 + ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ) ↑ 𝑁 ) ∈ { 𝑎 ∣ ∃ 𝑐 ∈ ℕ0 ∃ 𝑑 ∈ ℤ 𝑎 = ( 𝑐 + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · 𝑑 ) ) } ) → ( ( 𝑏 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st ‘ 𝑏 ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 2nd ‘ 𝑏 ) ) ) ) ‘ ( ◡ ( 𝑏 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st ‘ 𝑏 ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 2nd ‘ 𝑏 ) ) ) ) ‘ ( ( 𝐴 + ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ) ↑ 𝑁 ) ) ) = ( ( 𝐴 + ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ) ↑ 𝑁 ) ) |
22 |
19 20 21
|
syl2anc |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℤ ) → ( ( 𝑏 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st ‘ 𝑏 ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 2nd ‘ 𝑏 ) ) ) ) ‘ ( ◡ ( 𝑏 ∈ ( ℕ0 × ℤ ) ↦ ( ( 1st ‘ 𝑏 ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 2nd ‘ 𝑏 ) ) ) ) ‘ ( ( 𝐴 + ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ) ↑ 𝑁 ) ) ) = ( ( 𝐴 + ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ) ↑ 𝑁 ) ) |
23 |
4 17 22
|
3eqtr2d |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℤ ) → ( ( 𝐴 Xrm 𝑁 ) + ( ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) · ( 𝐴 Yrm 𝑁 ) ) ) = ( ( 𝐴 + ( √ ‘ ( ( 𝐴 ↑ 2 ) − 1 ) ) ) ↑ 𝑁 ) ) |