Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝑎 = 𝑏 → ( 𝐴 Yrm 𝑎 ) = ( 𝐴 Yrm 𝑏 ) ) |
2 |
|
oveq2 |
⊢ ( 𝑎 = 𝑀 → ( 𝐴 Yrm 𝑎 ) = ( 𝐴 Yrm 𝑀 ) ) |
3 |
|
oveq2 |
⊢ ( 𝑎 = 𝑁 → ( 𝐴 Yrm 𝑎 ) = ( 𝐴 Yrm 𝑁 ) ) |
4 |
|
zssre |
⊢ ℤ ⊆ ℝ |
5 |
|
frmy |
⊢ Yrm : ( ( ℤ≥ ‘ 2 ) × ℤ ) ⟶ ℤ |
6 |
5
|
fovcl |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑎 ∈ ℤ ) → ( 𝐴 Yrm 𝑎 ) ∈ ℤ ) |
7 |
6
|
zred |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑎 ∈ ℤ ) → ( 𝐴 Yrm 𝑎 ) ∈ ℝ ) |
8 |
|
ltrmy |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( 𝑎 < 𝑏 ↔ ( 𝐴 Yrm 𝑎 ) < ( 𝐴 Yrm 𝑏 ) ) ) |
9 |
8
|
biimpd |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( 𝑎 < 𝑏 → ( 𝐴 Yrm 𝑎 ) < ( 𝐴 Yrm 𝑏 ) ) ) |
10 |
9
|
3expb |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( 𝑎 < 𝑏 → ( 𝐴 Yrm 𝑎 ) < ( 𝐴 Yrm 𝑏 ) ) ) |
11 |
1 2 3 4 7 10
|
eqord1 |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝑀 = 𝑁 ↔ ( 𝐴 Yrm 𝑀 ) = ( 𝐴 Yrm 𝑁 ) ) ) |
12 |
11
|
3impb |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 = 𝑁 ↔ ( 𝐴 Yrm 𝑀 ) = ( 𝐴 Yrm 𝑁 ) ) ) |