| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0z |
⊢ 0 ∈ ℤ |
| 2 |
|
oveq2 |
⊢ ( 𝑎 = 𝑏 → ( 𝐴 Yrm 𝑎 ) = ( 𝐴 Yrm 𝑏 ) ) |
| 3 |
|
oveq2 |
⊢ ( 𝑎 = 𝑁 → ( 𝐴 Yrm 𝑎 ) = ( 𝐴 Yrm 𝑁 ) ) |
| 4 |
|
oveq2 |
⊢ ( 𝑎 = 0 → ( 𝐴 Yrm 𝑎 ) = ( 𝐴 Yrm 0 ) ) |
| 5 |
|
zssre |
⊢ ℤ ⊆ ℝ |
| 6 |
|
frmy |
⊢ Yrm : ( ( ℤ≥ ‘ 2 ) × ℤ ) ⟶ ℤ |
| 7 |
6
|
fovcl |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑎 ∈ ℤ ) → ( 𝐴 Yrm 𝑎 ) ∈ ℤ ) |
| 8 |
7
|
zred |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑎 ∈ ℤ ) → ( 𝐴 Yrm 𝑎 ) ∈ ℝ ) |
| 9 |
|
ltrmy |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( 𝑎 < 𝑏 ↔ ( 𝐴 Yrm 𝑎 ) < ( 𝐴 Yrm 𝑏 ) ) ) |
| 10 |
9
|
biimpd |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( 𝑎 < 𝑏 → ( 𝐴 Yrm 𝑎 ) < ( 𝐴 Yrm 𝑏 ) ) ) |
| 11 |
10
|
3expb |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( 𝑎 < 𝑏 → ( 𝐴 Yrm 𝑎 ) < ( 𝐴 Yrm 𝑏 ) ) ) |
| 12 |
2 3 4 5 8 11
|
eqord1 |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 0 ∈ ℤ ) ) → ( 𝑁 = 0 ↔ ( 𝐴 Yrm 𝑁 ) = ( 𝐴 Yrm 0 ) ) ) |
| 13 |
1 12
|
mpanr2 |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℤ ) → ( 𝑁 = 0 ↔ ( 𝐴 Yrm 𝑁 ) = ( 𝐴 Yrm 0 ) ) ) |
| 14 |
|
rmy0 |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 Yrm 0 ) = 0 ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℤ ) → ( 𝐴 Yrm 0 ) = 0 ) |
| 16 |
15
|
eqeq2d |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℤ ) → ( ( 𝐴 Yrm 𝑁 ) = ( 𝐴 Yrm 0 ) ↔ ( 𝐴 Yrm 𝑁 ) = 0 ) ) |
| 17 |
13 16
|
bitrd |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℤ ) → ( 𝑁 = 0 ↔ ( 𝐴 Yrm 𝑁 ) = 0 ) ) |