| Step |
Hyp |
Ref |
Expression |
| 1 |
|
id |
⊢ ( 𝑎 = 0 → 𝑎 = 0 ) |
| 2 |
|
oveq2 |
⊢ ( 𝑎 = 0 → ( 𝐴 Yrm 𝑎 ) = ( 𝐴 Yrm 0 ) ) |
| 3 |
1 2
|
breq12d |
⊢ ( 𝑎 = 0 → ( 𝑎 ≤ ( 𝐴 Yrm 𝑎 ) ↔ 0 ≤ ( 𝐴 Yrm 0 ) ) ) |
| 4 |
3
|
imbi2d |
⊢ ( 𝑎 = 0 → ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 𝑎 ≤ ( 𝐴 Yrm 𝑎 ) ) ↔ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 0 ≤ ( 𝐴 Yrm 0 ) ) ) ) |
| 5 |
|
id |
⊢ ( 𝑎 = 𝑏 → 𝑎 = 𝑏 ) |
| 6 |
|
oveq2 |
⊢ ( 𝑎 = 𝑏 → ( 𝐴 Yrm 𝑎 ) = ( 𝐴 Yrm 𝑏 ) ) |
| 7 |
5 6
|
breq12d |
⊢ ( 𝑎 = 𝑏 → ( 𝑎 ≤ ( 𝐴 Yrm 𝑎 ) ↔ 𝑏 ≤ ( 𝐴 Yrm 𝑏 ) ) ) |
| 8 |
7
|
imbi2d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 𝑎 ≤ ( 𝐴 Yrm 𝑎 ) ) ↔ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 𝑏 ≤ ( 𝐴 Yrm 𝑏 ) ) ) ) |
| 9 |
|
id |
⊢ ( 𝑎 = ( 𝑏 + 1 ) → 𝑎 = ( 𝑏 + 1 ) ) |
| 10 |
|
oveq2 |
⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( 𝐴 Yrm 𝑎 ) = ( 𝐴 Yrm ( 𝑏 + 1 ) ) ) |
| 11 |
9 10
|
breq12d |
⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( 𝑎 ≤ ( 𝐴 Yrm 𝑎 ) ↔ ( 𝑏 + 1 ) ≤ ( 𝐴 Yrm ( 𝑏 + 1 ) ) ) ) |
| 12 |
11
|
imbi2d |
⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 𝑎 ≤ ( 𝐴 Yrm 𝑎 ) ) ↔ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑏 + 1 ) ≤ ( 𝐴 Yrm ( 𝑏 + 1 ) ) ) ) ) |
| 13 |
|
id |
⊢ ( 𝑎 = 𝑁 → 𝑎 = 𝑁 ) |
| 14 |
|
oveq2 |
⊢ ( 𝑎 = 𝑁 → ( 𝐴 Yrm 𝑎 ) = ( 𝐴 Yrm 𝑁 ) ) |
| 15 |
13 14
|
breq12d |
⊢ ( 𝑎 = 𝑁 → ( 𝑎 ≤ ( 𝐴 Yrm 𝑎 ) ↔ 𝑁 ≤ ( 𝐴 Yrm 𝑁 ) ) ) |
| 16 |
15
|
imbi2d |
⊢ ( 𝑎 = 𝑁 → ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 𝑎 ≤ ( 𝐴 Yrm 𝑎 ) ) ↔ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ≤ ( 𝐴 Yrm 𝑁 ) ) ) ) |
| 17 |
|
0le0 |
⊢ 0 ≤ 0 |
| 18 |
|
rmy0 |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 Yrm 0 ) = 0 ) |
| 19 |
17 18
|
breqtrrid |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 0 ≤ ( 𝐴 Yrm 0 ) ) |
| 20 |
|
nn0z |
⊢ ( 𝑏 ∈ ℕ0 → 𝑏 ∈ ℤ ) |
| 21 |
20
|
3ad2ant1 |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ≤ ( 𝐴 Yrm 𝑏 ) ) → 𝑏 ∈ ℤ ) |
| 22 |
21
|
peano2zd |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ≤ ( 𝐴 Yrm 𝑏 ) ) → ( 𝑏 + 1 ) ∈ ℤ ) |
| 23 |
22
|
zred |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ≤ ( 𝐴 Yrm 𝑏 ) ) → ( 𝑏 + 1 ) ∈ ℝ ) |
| 24 |
|
simp2 |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ≤ ( 𝐴 Yrm 𝑏 ) ) → 𝐴 ∈ ( ℤ≥ ‘ 2 ) ) |
| 25 |
|
frmy |
⊢ Yrm : ( ( ℤ≥ ‘ 2 ) × ℤ ) ⟶ ℤ |
| 26 |
25
|
fovcl |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℤ ) → ( 𝐴 Yrm 𝑏 ) ∈ ℤ ) |
| 27 |
24 21 26
|
syl2anc |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ≤ ( 𝐴 Yrm 𝑏 ) ) → ( 𝐴 Yrm 𝑏 ) ∈ ℤ ) |
| 28 |
27
|
peano2zd |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ≤ ( 𝐴 Yrm 𝑏 ) ) → ( ( 𝐴 Yrm 𝑏 ) + 1 ) ∈ ℤ ) |
| 29 |
28
|
zred |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ≤ ( 𝐴 Yrm 𝑏 ) ) → ( ( 𝐴 Yrm 𝑏 ) + 1 ) ∈ ℝ ) |
| 30 |
25
|
fovcl |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑏 + 1 ) ∈ ℤ ) → ( 𝐴 Yrm ( 𝑏 + 1 ) ) ∈ ℤ ) |
| 31 |
24 22 30
|
syl2anc |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ≤ ( 𝐴 Yrm 𝑏 ) ) → ( 𝐴 Yrm ( 𝑏 + 1 ) ) ∈ ℤ ) |
| 32 |
31
|
zred |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ≤ ( 𝐴 Yrm 𝑏 ) ) → ( 𝐴 Yrm ( 𝑏 + 1 ) ) ∈ ℝ ) |
| 33 |
|
nn0re |
⊢ ( 𝑏 ∈ ℕ0 → 𝑏 ∈ ℝ ) |
| 34 |
33
|
3ad2ant1 |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ≤ ( 𝐴 Yrm 𝑏 ) ) → 𝑏 ∈ ℝ ) |
| 35 |
27
|
zred |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ≤ ( 𝐴 Yrm 𝑏 ) ) → ( 𝐴 Yrm 𝑏 ) ∈ ℝ ) |
| 36 |
|
1red |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ≤ ( 𝐴 Yrm 𝑏 ) ) → 1 ∈ ℝ ) |
| 37 |
|
simp3 |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ≤ ( 𝐴 Yrm 𝑏 ) ) → 𝑏 ≤ ( 𝐴 Yrm 𝑏 ) ) |
| 38 |
34 35 36 37
|
leadd1dd |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ≤ ( 𝐴 Yrm 𝑏 ) ) → ( 𝑏 + 1 ) ≤ ( ( 𝐴 Yrm 𝑏 ) + 1 ) ) |
| 39 |
34
|
ltp1d |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ≤ ( 𝐴 Yrm 𝑏 ) ) → 𝑏 < ( 𝑏 + 1 ) ) |
| 40 |
|
ltrmy |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℤ ∧ ( 𝑏 + 1 ) ∈ ℤ ) → ( 𝑏 < ( 𝑏 + 1 ) ↔ ( 𝐴 Yrm 𝑏 ) < ( 𝐴 Yrm ( 𝑏 + 1 ) ) ) ) |
| 41 |
24 21 22 40
|
syl3anc |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ≤ ( 𝐴 Yrm 𝑏 ) ) → ( 𝑏 < ( 𝑏 + 1 ) ↔ ( 𝐴 Yrm 𝑏 ) < ( 𝐴 Yrm ( 𝑏 + 1 ) ) ) ) |
| 42 |
39 41
|
mpbid |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ≤ ( 𝐴 Yrm 𝑏 ) ) → ( 𝐴 Yrm 𝑏 ) < ( 𝐴 Yrm ( 𝑏 + 1 ) ) ) |
| 43 |
|
zltp1le |
⊢ ( ( ( 𝐴 Yrm 𝑏 ) ∈ ℤ ∧ ( 𝐴 Yrm ( 𝑏 + 1 ) ) ∈ ℤ ) → ( ( 𝐴 Yrm 𝑏 ) < ( 𝐴 Yrm ( 𝑏 + 1 ) ) ↔ ( ( 𝐴 Yrm 𝑏 ) + 1 ) ≤ ( 𝐴 Yrm ( 𝑏 + 1 ) ) ) ) |
| 44 |
27 31 43
|
syl2anc |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ≤ ( 𝐴 Yrm 𝑏 ) ) → ( ( 𝐴 Yrm 𝑏 ) < ( 𝐴 Yrm ( 𝑏 + 1 ) ) ↔ ( ( 𝐴 Yrm 𝑏 ) + 1 ) ≤ ( 𝐴 Yrm ( 𝑏 + 1 ) ) ) ) |
| 45 |
42 44
|
mpbid |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ≤ ( 𝐴 Yrm 𝑏 ) ) → ( ( 𝐴 Yrm 𝑏 ) + 1 ) ≤ ( 𝐴 Yrm ( 𝑏 + 1 ) ) ) |
| 46 |
23 29 32 38 45
|
letrd |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ≤ ( 𝐴 Yrm 𝑏 ) ) → ( 𝑏 + 1 ) ≤ ( 𝐴 Yrm ( 𝑏 + 1 ) ) ) |
| 47 |
46
|
3exp |
⊢ ( 𝑏 ∈ ℕ0 → ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑏 ≤ ( 𝐴 Yrm 𝑏 ) → ( 𝑏 + 1 ) ≤ ( 𝐴 Yrm ( 𝑏 + 1 ) ) ) ) ) |
| 48 |
47
|
a2d |
⊢ ( 𝑏 ∈ ℕ0 → ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 𝑏 ≤ ( 𝐴 Yrm 𝑏 ) ) → ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑏 + 1 ) ≤ ( 𝐴 Yrm ( 𝑏 + 1 ) ) ) ) ) |
| 49 |
4 8 12 16 19 48
|
nn0ind |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ≤ ( 𝐴 Yrm 𝑁 ) ) ) |
| 50 |
49
|
impcom |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ≤ ( 𝐴 Yrm 𝑁 ) ) |