Metamath Proof Explorer
Description: Negation formula for Y sequence (odd function). (Contributed by Stefan
O'Rear, 22-Sep-2014)
|
|
Ref |
Expression |
|
Assertion |
rmyneg |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℤ ) → ( 𝐴 Yrm - 𝑁 ) = - ( 𝐴 Yrm 𝑁 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
rmxyneg |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℤ ) → ( ( 𝐴 Xrm - 𝑁 ) = ( 𝐴 Xrm 𝑁 ) ∧ ( 𝐴 Yrm - 𝑁 ) = - ( 𝐴 Yrm 𝑁 ) ) ) |
2 |
1
|
simprd |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℤ ) → ( 𝐴 Yrm - 𝑁 ) = - ( 𝐴 Yrm 𝑁 ) ) |