Step |
Hyp |
Ref |
Expression |
1 |
|
nnz |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
2 |
|
frmy |
⊢ Yrm : ( ( ℤ≥ ‘ 2 ) × ℤ ) ⟶ ℤ |
3 |
2
|
fovcl |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℤ ) → ( 𝐴 Yrm 𝑁 ) ∈ ℤ ) |
4 |
1 3
|
sylan2 |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ ) → ( 𝐴 Yrm 𝑁 ) ∈ ℤ ) |
5 |
|
rmy0 |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 Yrm 0 ) = 0 ) |
6 |
5
|
adantr |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ ) → ( 𝐴 Yrm 0 ) = 0 ) |
7 |
|
nngt0 |
⊢ ( 𝑁 ∈ ℕ → 0 < 𝑁 ) |
8 |
7
|
adantl |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ ) → 0 < 𝑁 ) |
9 |
|
simpl |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ ) → 𝐴 ∈ ( ℤ≥ ‘ 2 ) ) |
10 |
|
0zd |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ ) → 0 ∈ ℤ ) |
11 |
1
|
adantl |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℤ ) |
12 |
|
ltrmy |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 0 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 0 < 𝑁 ↔ ( 𝐴 Yrm 0 ) < ( 𝐴 Yrm 𝑁 ) ) ) |
13 |
9 10 11 12
|
syl3anc |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ ) → ( 0 < 𝑁 ↔ ( 𝐴 Yrm 0 ) < ( 𝐴 Yrm 𝑁 ) ) ) |
14 |
8 13
|
mpbid |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ ) → ( 𝐴 Yrm 0 ) < ( 𝐴 Yrm 𝑁 ) ) |
15 |
6 14
|
eqbrtrrd |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ ) → 0 < ( 𝐴 Yrm 𝑁 ) ) |
16 |
|
elnnz |
⊢ ( ( 𝐴 Yrm 𝑁 ) ∈ ℕ ↔ ( ( 𝐴 Yrm 𝑁 ) ∈ ℤ ∧ 0 < ( 𝐴 Yrm 𝑁 ) ) ) |
17 |
4 15 16
|
sylanbrc |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ ) → ( 𝐴 Yrm 𝑁 ) ∈ ℕ ) |