Step |
Hyp |
Ref |
Expression |
1 |
|
nn0z |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) |
2 |
|
frmy |
⊢ Yrm : ( ( ℤ≥ ‘ 2 ) × ℤ ) ⟶ ℤ |
3 |
2
|
fovcl |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℤ ) → ( 𝐴 Yrm 𝑁 ) ∈ ℤ ) |
4 |
1 3
|
sylan2 |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 Yrm 𝑁 ) ∈ ℤ ) |
5 |
|
rmxypos |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( 0 < ( 𝐴 Xrm 𝑁 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑁 ) ) ) |
6 |
5
|
simprd |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → 0 ≤ ( 𝐴 Yrm 𝑁 ) ) |
7 |
|
elnn0z |
⊢ ( ( 𝐴 Yrm 𝑁 ) ∈ ℕ0 ↔ ( ( 𝐴 Yrm 𝑁 ) ∈ ℤ ∧ 0 ≤ ( 𝐴 Yrm 𝑁 ) ) ) |
8 |
4 6 7
|
sylanbrc |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 Yrm 𝑁 ) ∈ ℕ0 ) |