Metamath Proof Explorer


Theorem rn1st

Description: The range of a function with a first-countable domain is itself first-countable. This is a variation of 1stcrestlem , with a not-free hypothesis replacing a disjoint variable constraint. (Contributed by Glauco Siliprandi, 24-Jan-2025)

Ref Expression
Hypothesis rn1st.1 𝑥 𝐵
Assertion rn1st ( 𝐵 ≼ ω → ran ( 𝑥𝐵𝐶 ) ≼ ω )

Proof

Step Hyp Ref Expression
1 rn1st.1 𝑥 𝐵
2 ordom Ord ω
3 reldom Rel ≼
4 3 brrelex2i ( 𝐵 ≼ ω → ω ∈ V )
5 elong ( ω ∈ V → ( ω ∈ On ↔ Ord ω ) )
6 4 5 syl ( 𝐵 ≼ ω → ( ω ∈ On ↔ Ord ω ) )
7 2 6 mpbiri ( 𝐵 ≼ ω → ω ∈ On )
8 ondomen ( ( ω ∈ On ∧ 𝐵 ≼ ω ) → 𝐵 ∈ dom card )
9 7 8 mpancom ( 𝐵 ≼ ω → 𝐵 ∈ dom card )
10 eqid ( 𝑥𝐵𝐶 ) = ( 𝑥𝐵𝐶 )
11 1 10 dmmptssf dom ( 𝑥𝐵𝐶 ) ⊆ 𝐵
12 ssnum ( ( 𝐵 ∈ dom card ∧ dom ( 𝑥𝐵𝐶 ) ⊆ 𝐵 ) → dom ( 𝑥𝐵𝐶 ) ∈ dom card )
13 9 11 12 sylancl ( 𝐵 ≼ ω → dom ( 𝑥𝐵𝐶 ) ∈ dom card )
14 funmpt Fun ( 𝑥𝐵𝐶 )
15 funforn ( Fun ( 𝑥𝐵𝐶 ) ↔ ( 𝑥𝐵𝐶 ) : dom ( 𝑥𝐵𝐶 ) –onto→ ran ( 𝑥𝐵𝐶 ) )
16 14 15 mpbi ( 𝑥𝐵𝐶 ) : dom ( 𝑥𝐵𝐶 ) –onto→ ran ( 𝑥𝐵𝐶 )
17 fodomnum ( dom ( 𝑥𝐵𝐶 ) ∈ dom card → ( ( 𝑥𝐵𝐶 ) : dom ( 𝑥𝐵𝐶 ) –onto→ ran ( 𝑥𝐵𝐶 ) → ran ( 𝑥𝐵𝐶 ) ≼ dom ( 𝑥𝐵𝐶 ) ) )
18 13 16 17 mpisyl ( 𝐵 ≼ ω → ran ( 𝑥𝐵𝐶 ) ≼ dom ( 𝑥𝐵𝐶 ) )
19 ctex ( 𝐵 ≼ ω → 𝐵 ∈ V )
20 ssdomg ( 𝐵 ∈ V → ( dom ( 𝑥𝐵𝐶 ) ⊆ 𝐵 → dom ( 𝑥𝐵𝐶 ) ≼ 𝐵 ) )
21 19 11 20 mpisyl ( 𝐵 ≼ ω → dom ( 𝑥𝐵𝐶 ) ≼ 𝐵 )
22 domtr ( ( dom ( 𝑥𝐵𝐶 ) ≼ 𝐵𝐵 ≼ ω ) → dom ( 𝑥𝐵𝐶 ) ≼ ω )
23 21 22 mpancom ( 𝐵 ≼ ω → dom ( 𝑥𝐵𝐶 ) ≼ ω )
24 domtr ( ( ran ( 𝑥𝐵𝐶 ) ≼ dom ( 𝑥𝐵𝐶 ) ∧ dom ( 𝑥𝐵𝐶 ) ≼ ω ) → ran ( 𝑥𝐵𝐶 ) ≼ ω )
25 18 23 24 syl2anc ( 𝐵 ≼ ω → ran ( 𝑥𝐵𝐶 ) ≼ ω )