Step |
Hyp |
Ref |
Expression |
1 |
|
rn1st.1 |
⊢ Ⅎ 𝑥 𝐵 |
2 |
|
ordom |
⊢ Ord ω |
3 |
|
reldom |
⊢ Rel ≼ |
4 |
3
|
brrelex2i |
⊢ ( 𝐵 ≼ ω → ω ∈ V ) |
5 |
|
elong |
⊢ ( ω ∈ V → ( ω ∈ On ↔ Ord ω ) ) |
6 |
4 5
|
syl |
⊢ ( 𝐵 ≼ ω → ( ω ∈ On ↔ Ord ω ) ) |
7 |
2 6
|
mpbiri |
⊢ ( 𝐵 ≼ ω → ω ∈ On ) |
8 |
|
ondomen |
⊢ ( ( ω ∈ On ∧ 𝐵 ≼ ω ) → 𝐵 ∈ dom card ) |
9 |
7 8
|
mpancom |
⊢ ( 𝐵 ≼ ω → 𝐵 ∈ dom card ) |
10 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) |
11 |
1 10
|
dmmptssf |
⊢ dom ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ⊆ 𝐵 |
12 |
|
ssnum |
⊢ ( ( 𝐵 ∈ dom card ∧ dom ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ⊆ 𝐵 ) → dom ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ dom card ) |
13 |
9 11 12
|
sylancl |
⊢ ( 𝐵 ≼ ω → dom ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ dom card ) |
14 |
|
funmpt |
⊢ Fun ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) |
15 |
|
funforn |
⊢ ( Fun ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ↔ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) : dom ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) –onto→ ran ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ) |
16 |
14 15
|
mpbi |
⊢ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) : dom ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) –onto→ ran ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) |
17 |
|
fodomnum |
⊢ ( dom ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ dom card → ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) : dom ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) –onto→ ran ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) → ran ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ≼ dom ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ) ) |
18 |
13 16 17
|
mpisyl |
⊢ ( 𝐵 ≼ ω → ran ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ≼ dom ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ) |
19 |
|
ctex |
⊢ ( 𝐵 ≼ ω → 𝐵 ∈ V ) |
20 |
|
ssdomg |
⊢ ( 𝐵 ∈ V → ( dom ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ⊆ 𝐵 → dom ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ≼ 𝐵 ) ) |
21 |
19 11 20
|
mpisyl |
⊢ ( 𝐵 ≼ ω → dom ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ≼ 𝐵 ) |
22 |
|
domtr |
⊢ ( ( dom ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ≼ 𝐵 ∧ 𝐵 ≼ ω ) → dom ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ≼ ω ) |
23 |
21 22
|
mpancom |
⊢ ( 𝐵 ≼ ω → dom ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ≼ ω ) |
24 |
|
domtr |
⊢ ( ( ran ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ≼ dom ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∧ dom ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ≼ ω ) → ran ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ≼ ω ) |
25 |
18 23 24
|
syl2anc |
⊢ ( 𝐵 ≼ ω → ran ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ≼ ω ) |