Metamath Proof Explorer


Theorem rnascl

Description: The set of injected scalars is also interpretable as the span of the identity. (Contributed by Mario Carneiro, 9-Mar-2015)

Ref Expression
Hypotheses rnascl.a 𝐴 = ( algSc ‘ 𝑊 )
rnascl.o 1 = ( 1r𝑊 )
rnascl.n 𝑁 = ( LSpan ‘ 𝑊 )
Assertion rnascl ( 𝑊 ∈ AssAlg → ran 𝐴 = ( 𝑁 ‘ { 1 } ) )

Proof

Step Hyp Ref Expression
1 rnascl.a 𝐴 = ( algSc ‘ 𝑊 )
2 rnascl.o 1 = ( 1r𝑊 )
3 rnascl.n 𝑁 = ( LSpan ‘ 𝑊 )
4 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
5 eqid ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) )
6 eqid ( ·𝑠𝑊 ) = ( ·𝑠𝑊 )
7 1 4 5 6 2 asclfval 𝐴 = ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ↦ ( 𝑦 ( ·𝑠𝑊 ) 1 ) )
8 7 rnmpt ran 𝐴 = { 𝑥 ∣ ∃ 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥 = ( 𝑦 ( ·𝑠𝑊 ) 1 ) }
9 assalmod ( 𝑊 ∈ AssAlg → 𝑊 ∈ LMod )
10 assaring ( 𝑊 ∈ AssAlg → 𝑊 ∈ Ring )
11 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
12 11 2 ringidcl ( 𝑊 ∈ Ring → 1 ∈ ( Base ‘ 𝑊 ) )
13 10 12 syl ( 𝑊 ∈ AssAlg → 1 ∈ ( Base ‘ 𝑊 ) )
14 4 5 11 6 3 lspsn ( ( 𝑊 ∈ LMod ∧ 1 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑁 ‘ { 1 } ) = { 𝑥 ∣ ∃ 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥 = ( 𝑦 ( ·𝑠𝑊 ) 1 ) } )
15 9 13 14 syl2anc ( 𝑊 ∈ AssAlg → ( 𝑁 ‘ { 1 } ) = { 𝑥 ∣ ∃ 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥 = ( 𝑦 ( ·𝑠𝑊 ) 1 ) } )
16 8 15 eqtr4id ( 𝑊 ∈ AssAlg → ran 𝐴 = ( 𝑁 ‘ { 1 } ) )