| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rnascl.a | ⊢ 𝐴  =  ( algSc ‘ 𝑊 ) | 
						
							| 2 |  | rnascl.o | ⊢  1   =  ( 1r ‘ 𝑊 ) | 
						
							| 3 |  | rnascl.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑊 ) | 
						
							| 4 |  | eqid | ⊢ ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑊 ) | 
						
							| 5 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) )  =  ( Base ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 6 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑊 )  =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 7 | 1 4 5 6 2 | asclfval | ⊢ 𝐴  =  ( 𝑦  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ↦  ( 𝑦 (  ·𝑠  ‘ 𝑊 )  1  ) ) | 
						
							| 8 | 7 | rnmpt | ⊢ ran  𝐴  =  { 𝑥  ∣  ∃ 𝑦  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥  =  ( 𝑦 (  ·𝑠  ‘ 𝑊 )  1  ) } | 
						
							| 9 |  | assalmod | ⊢ ( 𝑊  ∈  AssAlg  →  𝑊  ∈  LMod ) | 
						
							| 10 |  | assaring | ⊢ ( 𝑊  ∈  AssAlg  →  𝑊  ∈  Ring ) | 
						
							| 11 |  | eqid | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) | 
						
							| 12 | 11 2 | ringidcl | ⊢ ( 𝑊  ∈  Ring  →   1   ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 13 | 10 12 | syl | ⊢ ( 𝑊  ∈  AssAlg  →   1   ∈  ( Base ‘ 𝑊 ) ) | 
						
							| 14 | 4 5 11 6 3 | lspsn | ⊢ ( ( 𝑊  ∈  LMod  ∧   1   ∈  ( Base ‘ 𝑊 ) )  →  ( 𝑁 ‘ {  1  } )  =  { 𝑥  ∣  ∃ 𝑦  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥  =  ( 𝑦 (  ·𝑠  ‘ 𝑊 )  1  ) } ) | 
						
							| 15 | 9 13 14 | syl2anc | ⊢ ( 𝑊  ∈  AssAlg  →  ( 𝑁 ‘ {  1  } )  =  { 𝑥  ∣  ∃ 𝑦  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑥  =  ( 𝑦 (  ·𝑠  ‘ 𝑊 )  1  ) } ) | 
						
							| 16 | 8 15 | eqtr4id | ⊢ ( 𝑊  ∈  AssAlg  →  ran  𝐴  =  ( 𝑁 ‘ {  1  } ) ) |