Metamath Proof Explorer


Theorem rnasclassa

Description: The scalar multiples of the unit vector form a subalgebra of the vectors. (Contributed by SN, 16-Nov-2023)

Ref Expression
Hypotheses rnasclassa.a 𝐴 = ( algSc ‘ 𝑊 )
rnasclassa.u 𝑈 = ( 𝑊s ran 𝐴 )
rnasclassa.w ( 𝜑𝑊 ∈ AssAlg )
Assertion rnasclassa ( 𝜑𝑈 ∈ AssAlg )

Proof

Step Hyp Ref Expression
1 rnasclassa.a 𝐴 = ( algSc ‘ 𝑊 )
2 rnasclassa.u 𝑈 = ( 𝑊s ran 𝐴 )
3 rnasclassa.w ( 𝜑𝑊 ∈ AssAlg )
4 ssidd ( 𝜑 → ran 𝐴 ⊆ ran 𝐴 )
5 1 3 rnasclsubrg ( 𝜑 → ran 𝐴 ∈ ( SubRing ‘ 𝑊 ) )
6 eqid ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 )
7 1 6 issubassa2 ( ( 𝑊 ∈ AssAlg ∧ ran 𝐴 ∈ ( SubRing ‘ 𝑊 ) ) → ( ran 𝐴 ∈ ( LSubSp ‘ 𝑊 ) ↔ ran 𝐴 ⊆ ran 𝐴 ) )
8 2 6 issubassa3 ( ( 𝑊 ∈ AssAlg ∧ ( ran 𝐴 ∈ ( SubRing ‘ 𝑊 ) ∧ ran 𝐴 ∈ ( LSubSp ‘ 𝑊 ) ) ) → 𝑈 ∈ AssAlg )
9 8 expr ( ( 𝑊 ∈ AssAlg ∧ ran 𝐴 ∈ ( SubRing ‘ 𝑊 ) ) → ( ran 𝐴 ∈ ( LSubSp ‘ 𝑊 ) → 𝑈 ∈ AssAlg ) )
10 7 9 sylbird ( ( 𝑊 ∈ AssAlg ∧ ran 𝐴 ∈ ( SubRing ‘ 𝑊 ) ) → ( ran 𝐴 ⊆ ran 𝐴𝑈 ∈ AssAlg ) )
11 3 5 10 syl2anc ( 𝜑 → ( ran 𝐴 ⊆ ran 𝐴𝑈 ∈ AssAlg ) )
12 4 11 mpd ( 𝜑𝑈 ∈ AssAlg )