Step |
Hyp |
Ref |
Expression |
1 |
|
rnasclassa.a |
⊢ 𝐴 = ( algSc ‘ 𝑊 ) |
2 |
|
rnasclassa.u |
⊢ 𝑈 = ( 𝑊 ↾s ran 𝐴 ) |
3 |
|
rnasclassa.w |
⊢ ( 𝜑 → 𝑊 ∈ AssAlg ) |
4 |
|
ssidd |
⊢ ( 𝜑 → ran 𝐴 ⊆ ran 𝐴 ) |
5 |
1 3
|
rnasclsubrg |
⊢ ( 𝜑 → ran 𝐴 ∈ ( SubRing ‘ 𝑊 ) ) |
6 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
7 |
1 6
|
issubassa2 |
⊢ ( ( 𝑊 ∈ AssAlg ∧ ran 𝐴 ∈ ( SubRing ‘ 𝑊 ) ) → ( ran 𝐴 ∈ ( LSubSp ‘ 𝑊 ) ↔ ran 𝐴 ⊆ ran 𝐴 ) ) |
8 |
2 6
|
issubassa3 |
⊢ ( ( 𝑊 ∈ AssAlg ∧ ( ran 𝐴 ∈ ( SubRing ‘ 𝑊 ) ∧ ran 𝐴 ∈ ( LSubSp ‘ 𝑊 ) ) ) → 𝑈 ∈ AssAlg ) |
9 |
8
|
expr |
⊢ ( ( 𝑊 ∈ AssAlg ∧ ran 𝐴 ∈ ( SubRing ‘ 𝑊 ) ) → ( ran 𝐴 ∈ ( LSubSp ‘ 𝑊 ) → 𝑈 ∈ AssAlg ) ) |
10 |
7 9
|
sylbird |
⊢ ( ( 𝑊 ∈ AssAlg ∧ ran 𝐴 ∈ ( SubRing ‘ 𝑊 ) ) → ( ran 𝐴 ⊆ ran 𝐴 → 𝑈 ∈ AssAlg ) ) |
11 |
3 5 10
|
syl2anc |
⊢ ( 𝜑 → ( ran 𝐴 ⊆ ran 𝐴 → 𝑈 ∈ AssAlg ) ) |
12 |
4 11
|
mpd |
⊢ ( 𝜑 → 𝑈 ∈ AssAlg ) |