Metamath Proof Explorer


Theorem rnasclmulcl

Description: (Vector) multiplication is closed for scalar multiples of the unit vector. (Contributed by SN, 5-Nov-2023)

Ref Expression
Hypotheses rnasclmulcl.c 𝐶 = ( algSc ‘ 𝑊 )
rnasclmulcl.x × = ( .r𝑊 )
rnasclmulcl.w ( 𝜑𝑊 ∈ AssAlg )
Assertion rnasclmulcl ( ( 𝜑 ∧ ( 𝑋 ∈ ran 𝐶𝑌 ∈ ran 𝐶 ) ) → ( 𝑋 × 𝑌 ) ∈ ran 𝐶 )

Proof

Step Hyp Ref Expression
1 rnasclmulcl.c 𝐶 = ( algSc ‘ 𝑊 )
2 rnasclmulcl.x × = ( .r𝑊 )
3 rnasclmulcl.w ( 𝜑𝑊 ∈ AssAlg )
4 1 3 rnasclsubrg ( 𝜑 → ran 𝐶 ∈ ( SubRing ‘ 𝑊 ) )
5 2 subrgmcl ( ( ran 𝐶 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝑋 ∈ ran 𝐶𝑌 ∈ ran 𝐶 ) → ( 𝑋 × 𝑌 ) ∈ ran 𝐶 )
6 4 5 syl3an1 ( ( 𝜑𝑋 ∈ ran 𝐶𝑌 ∈ ran 𝐶 ) → ( 𝑋 × 𝑌 ) ∈ ran 𝐶 )
7 6 3expb ( ( 𝜑 ∧ ( 𝑋 ∈ ran 𝐶𝑌 ∈ ran 𝐶 ) ) → ( 𝑋 × 𝑌 ) ∈ ran 𝐶 )