Description: (Vector) multiplication is closed for scalar multiples of the unit vector. (Contributed by SN, 5-Nov-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rnasclmulcl.c | ⊢ 𝐶 = ( algSc ‘ 𝑊 ) | |
rnasclmulcl.x | ⊢ × = ( .r ‘ 𝑊 ) | ||
rnasclmulcl.w | ⊢ ( 𝜑 → 𝑊 ∈ AssAlg ) | ||
Assertion | rnasclmulcl | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ ran 𝐶 ∧ 𝑌 ∈ ran 𝐶 ) ) → ( 𝑋 × 𝑌 ) ∈ ran 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnasclmulcl.c | ⊢ 𝐶 = ( algSc ‘ 𝑊 ) | |
2 | rnasclmulcl.x | ⊢ × = ( .r ‘ 𝑊 ) | |
3 | rnasclmulcl.w | ⊢ ( 𝜑 → 𝑊 ∈ AssAlg ) | |
4 | 1 3 | rnasclsubrg | ⊢ ( 𝜑 → ran 𝐶 ∈ ( SubRing ‘ 𝑊 ) ) |
5 | 2 | subrgmcl | ⊢ ( ( ran 𝐶 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝑋 ∈ ran 𝐶 ∧ 𝑌 ∈ ran 𝐶 ) → ( 𝑋 × 𝑌 ) ∈ ran 𝐶 ) |
6 | 4 5 | syl3an1 | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐶 ∧ 𝑌 ∈ ran 𝐶 ) → ( 𝑋 × 𝑌 ) ∈ ran 𝐶 ) |
7 | 6 | 3expb | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ ran 𝐶 ∧ 𝑌 ∈ ran 𝐶 ) ) → ( 𝑋 × 𝑌 ) ∈ ran 𝐶 ) |