Description: The scalar multiples of the unit vector form a subring of the vectors. (Contributed by SN, 5-Nov-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rnasclsubrg.c | ⊢ 𝐶 = ( algSc ‘ 𝑊 ) | |
rnasclsubrg.w | ⊢ ( 𝜑 → 𝑊 ∈ AssAlg ) | ||
Assertion | rnasclsubrg | ⊢ ( 𝜑 → ran 𝐶 ∈ ( SubRing ‘ 𝑊 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnasclsubrg.c | ⊢ 𝐶 = ( algSc ‘ 𝑊 ) | |
2 | rnasclsubrg.w | ⊢ ( 𝜑 → 𝑊 ∈ AssAlg ) | |
3 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
4 | 1 3 | asclrhm | ⊢ ( 𝑊 ∈ AssAlg → 𝐶 ∈ ( ( Scalar ‘ 𝑊 ) RingHom 𝑊 ) ) |
5 | rnrhmsubrg | ⊢ ( 𝐶 ∈ ( ( Scalar ‘ 𝑊 ) RingHom 𝑊 ) → ran 𝐶 ∈ ( SubRing ‘ 𝑊 ) ) | |
6 | 2 4 5 | 3syl | ⊢ ( 𝜑 → ran 𝐶 ∈ ( SubRing ‘ 𝑊 ) ) |