Metamath Proof Explorer


Theorem rnasclsubrg

Description: The scalar multiples of the unit vector form a subring of the vectors. (Contributed by SN, 5-Nov-2023)

Ref Expression
Hypotheses rnasclsubrg.c 𝐶 = ( algSc ‘ 𝑊 )
rnasclsubrg.w ( 𝜑𝑊 ∈ AssAlg )
Assertion rnasclsubrg ( 𝜑 → ran 𝐶 ∈ ( SubRing ‘ 𝑊 ) )

Proof

Step Hyp Ref Expression
1 rnasclsubrg.c 𝐶 = ( algSc ‘ 𝑊 )
2 rnasclsubrg.w ( 𝜑𝑊 ∈ AssAlg )
3 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
4 1 3 asclrhm ( 𝑊 ∈ AssAlg → 𝐶 ∈ ( ( Scalar ‘ 𝑊 ) RingHom 𝑊 ) )
5 rnrhmsubrg ( 𝐶 ∈ ( ( Scalar ‘ 𝑊 ) RingHom 𝑊 ) → ran 𝐶 ∈ ( SubRing ‘ 𝑊 ) )
6 2 4 5 3syl ( 𝜑 → ran 𝐶 ∈ ( SubRing ‘ 𝑊 ) )