Metamath Proof Explorer


Theorem rnblopn

Description: A ball of a metric space is an open set. (Contributed by NM, 12-Sep-2006)

Ref Expression
Hypothesis mopni.1 𝐽 = ( MetOpen ‘ 𝐷 )
Assertion rnblopn ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ran ( ball ‘ 𝐷 ) ) → 𝐵𝐽 )

Proof

Step Hyp Ref Expression
1 mopni.1 𝐽 = ( MetOpen ‘ 𝐷 )
2 1 blssopn ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ran ( ball ‘ 𝐷 ) ⊆ 𝐽 )
3 2 sselda ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ∈ ran ( ball ‘ 𝐷 ) ) → 𝐵𝐽 )